Spaces:
Runtime error
Runtime error
File size: 6,947 Bytes
1ed72c0 97bfbcb 1ed72c0 97bfbcb 5258909 1ed72c0 97bfbcb 1ed72c0 97bfbcb 1ed72c0 97bfbcb 1ed72c0 97bfbcb 1ed72c0 97bfbcb 1ed72c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
from ctransformers import AutoModelForCausalLM, AutoConfig, Config # import for GGUF/GGML models
import datetime
# modelfile = "models/tinyllama-1.1b-1t-openorca.Q4_K_M.gguf"
# modelfile="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
modelfile="TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
i_temperature = 0.30
i_max_new_tokens=1100
i_repetitionpenalty = 1.2
i_contextlength=12048
logfile = 'TinyLlama.1B.txt'
print("loading model...")
stt = datetime.datetime.now()
conf = AutoConfig(Config(temperature=i_temperature,
repetition_penalty=i_repetitionpenalty,
batch_size=64,
max_new_tokens=i_max_new_tokens,
context_length=i_contextlength))
llm = AutoModelForCausalLM.from_pretrained(modelfile,
model_type="llama",
config=conf)
dt = datetime.datetime.now() - stt
print(f"Model loaded in {dt}")
def writehistory(text):
with open(logfile, 'a', encoding='utf-8') as f:
f.write(text)
f.write('\n')
f.close()
with gr.Blocks(theme='ParityError/Interstellar') as demo:
# TITLE SECTION
with gr.Row():
with gr.Column(scale=12):
gr.HTML("<center>"
+ "<h1>π¦ TinyLlama 1.1B π 4K context window</h2></center>")
gr.Markdown("""
**Currently Running**: [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) **Chat History Log File**: *TinyLlama.1B.txt*
- **Base Model**: TinyLlama/TinyLlama-1.1B-Chat-v0.6, Fine tuned on OpenOrca GPT4 subset for 1 epoch, Using CHATML format.
- **License**: Apache 2.0, following the TinyLlama base model.
The model output is not censored and the authors do not endorse the opinions in the generated content. Use at your own risk.
""")
gr.Image(value='imgs/TinyLlama_logo.png', width=70)
# chat and parameters settings
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(height = 350, show_copy_button=True, avatar_images = ["imgs/user_logo.png","imgs/TinyLlama_logo.png"])
with gr.Row():
with gr.Column(scale=14):
msg = gr.Textbox(show_label=False, placeholder="Enter text", lines=2)
submitBtn = gr.Button("\n㪠Send\n", size="lg", variant="primary", min_width=140)
with gr.Column(min_width=50, scale=1):
with gr.Tab(label="Parameter Setting"):
gr.Markdown("# Parameters")
top_p = gr.Slider(minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p")
temperature = gr.Slider(minimum=0.1,
maximum=1.0,
value=0.30,
step=0.01,
interactive=True,
label="Temperature")
max_length_tokens = gr.Slider(minimum=0,
maximum=4096,
value=1060,
step=4,
interactive=True,
label="Max Generation Tokens")
rep_pen = gr.Slider(minimum=0,
maximum=5,
value=1.2,
step=0.05,
interactive=True,
label="Repetition Penalty")
clear = gr.Button("ποΈ Clear All Messages", variant='secondary')
def user(user_message, history):
writehistory(f"USER: {user_message}")
return "", history + [[user_message, None]]
def bot(history, t, p, m, r):
# SYSTEM_PROMPT = """<|im_start|>system
# You are a helpful bot. Your answers are clear and concise.
# <|im_end|>
# """
# prompt = f"<|im_start|>system<|im_end|><|im_start|>user\n{history[-1][0]}<|im_end|>\n<|im_start|>assistant\n"
SYSTEM_PROMPT = """<|im_start|>system
You are a customer support chatbot for an online platform.
Your purpose is to assist users with their inquiries and provide accurate information.
You have been trained with a knowledge base that includes rules and limitations regarding chargebacks.
The knowledge base consists of the following information:
1. Chargebacks beyond 90 days are not possible.
2. Chargebacks above $1000 are not allowed.
3. Chargebacks for transactions with a valid 3D secure are not allowed.
Use the provided conversation example as a starting point for training.
Your goal is to respond to user queries in a helpful and informative manner, ensuring that you adhere to the platform's chargeback policies.
<|im_end|>
"""
prompt = f"<|im_start|>system<|im_end|><|im_start|>user\n{history[-1][0]}<|im_end|>\n<|im_start|>assistant\n"
print(f"history lenght: {len(history)}")
if len(history) == 1:
print("this is the first round")
else:
print("here we should pass more conversations")
history[-1][1] = ""
for character in llm(prompt,
temperature = t,
top_p = p,
repetition_penalty = r,
max_new_tokens=m,
stop = ['<|im_end|>'],
stream = True):
history[-1][1] += character
yield history
writehistory(f"temperature: {t}, top_p: {p}, maxNewTokens: {m}, repetitionPenalty: {r}\n---\nBOT: {history}\n\n")
# Log in the terminal the messages
print(f"USER: {history[-1][0]}\n---\ntemperature: {t}, top_p: {p}, maxNewTokens: {m}, repetitionPenalty: {r}\n---\nBOT: {history[-1][1]}\n\n")
# Clicking the submitBtn will call the generation with Parameters in the slides
submitBtn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot,temperature,top_p,max_length_tokens,rep_pen], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue() # required to yield the streams from the text generation
demo.launch(inbrowser=True, share=True) |