jonathanjordan21 commited on
Commit
e63081c
·
verified ·
1 Parent(s): 9999906

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import re
3
  import inspect
 
4
 
5
  from sentence_transformers import SentenceTransformer
6
  from sentence_transformers.util import cos_sim
@@ -86,7 +87,6 @@ codes = """001 - Pendaftaran Kendaraan
86
  009 - Penangguhan atau Deklarasi Perubahan Penggunaan Kendaraan""".split("\n")
87
 
88
 
89
-
90
  examples = [
91
  {"code": "001", "examples": [
92
  "Register a new vehicle",
@@ -305,7 +305,11 @@ model_id = model_ids[-1]
305
  model = SentenceTransformer(model_id, trust_remote_code=True)
306
 
307
  # codes_emb = model.encode([x[6:] for x in codes])
308
- codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
 
 
 
 
309
 
310
 
311
  def censor_middle(number, num_to_hide=4):
@@ -586,7 +590,8 @@ def reload(chosen_model_id):
586
  model = SentenceTransformer(chosen_model_id, trust_remote_code=True)
587
  model_id = chosen_model_id
588
  # codes_emb = model.encode([x[6:] for x in codes])
589
- codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
 
590
  return f"Model {chosen_model_id} has been succesfully loaded!"
591
  return f"Model {chosen_model_id} is ready!"
592
 
 
1
  import gradio as gr
2
  import re
3
  import inspect
4
+ import numpy as np
5
 
6
  from sentence_transformers import SentenceTransformer
7
  from sentence_transformers.util import cos_sim
 
87
  009 - Penangguhan atau Deklarasi Perubahan Penggunaan Kendaraan""".split("\n")
88
 
89
 
 
90
  examples = [
91
  {"code": "001", "examples": [
92
  "Register a new vehicle",
 
305
  model = SentenceTransformer(model_id, trust_remote_code=True)
306
 
307
  # codes_emb = model.encode([x[6:] for x in codes])
308
+ # codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
309
+ codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
310
+ # for x in examples:
311
+ # codes_emb.append(model.encode(x["examples"]))
312
+ # codes_emb = np.mean(codes_emb, axis=1)
313
 
314
 
315
  def censor_middle(number, num_to_hide=4):
 
590
  model = SentenceTransformer(chosen_model_id, trust_remote_code=True)
591
  model_id = chosen_model_id
592
  # codes_emb = model.encode([x[6:] for x in codes])
593
+ # codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
594
+ codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
595
  return f"Model {chosen_model_id} has been succesfully loaded!"
596
  return f"Model {chosen_model_id} is ready!"
597