Diffusion-As-Shader / testing /evaluation.py
Beijia11
init
3aba902
raw
history blame
30.6 kB
import argparse
from typing import Any, Dict, List, Literal, Tuple
import pandas as pd
import os
import sys
import torch
from diffusers import (
CogVideoXPipeline,
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXVideoToVideoPipeline,
)
from diffusers.utils import export_to_video, load_image, load_video
import numpy as np
import random
import cv2
from pathlib import Path
import decord
from torchvision import transforms
from torchvision.transforms.functional import resize
import PIL.Image
from PIL import Image
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(current_dir, '..'))
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking, CogVideoXPipelineTracking, CogVideoXVideoToVideoPipelineTracking
from training.dataset import VideoDataset, VideoDatasetWithResizingTracking
class VideoDatasetWithResizingTrackingEval(VideoDataset):
def __init__(self, *args, **kwargs) -> None:
self.tracking_column = kwargs.pop("tracking_column", None)
self.image_paths = kwargs.pop("image_paths", None)
super().__init__(*args, **kwargs)
def _preprocess_video(self, path: Path, tracking_path: Path, image_paths: Path = None) -> torch.Tensor:
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path, tracking_path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
nearest_frame_bucket = min(
self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames))
)
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
image = Image.open(image_paths)
if image.mode != 'RGB':
image = image.convert('RGB')
image = torch.from_numpy(np.array(image)).float()
image = image.permute(2, 0, 1).contiguous()
image = resize(image, nearest_res)
image = self.video_transforms(image)
tracking_reader = decord.VideoReader(uri=tracking_path.as_posix())
tracking_frames = tracking_reader.get_batch(frame_indices)
tracking_frames = tracking_frames[:nearest_frame_bucket].float()
tracking_frames = tracking_frames.permute(0, 3, 1, 2).contiguous()
tracking_frames_resized = torch.stack([resize(tracking_frame, nearest_res) for tracking_frame in tracking_frames], dim=0)
tracking_frames = torch.stack([self.video_transforms(tracking_frame) for tracking_frame in tracking_frames_resized], dim=0)
return image, frames, tracking_frames, None
def _find_nearest_resolution(self, height, width):
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
return nearest_res[1], nearest_res[2]
def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str], List[str]]:
if not self.data_root.exists():
raise ValueError("Root folder for videos does not exist")
prompt_path = self.data_root.joinpath(self.caption_column)
video_path = self.data_root.joinpath(self.video_column)
tracking_path = self.data_root.joinpath(self.tracking_column)
image_paths = self.data_root.joinpath(self.image_paths)
if not prompt_path.exists() or not prompt_path.is_file():
raise ValueError(
"Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts."
)
if not video_path.exists() or not video_path.is_file():
raise ValueError(
"Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory."
)
if not tracking_path.exists() or not tracking_path.is_file():
raise ValueError(
"Expected `--tracking_column` to be path to a file in `--data_root` containing line-separated tracking information."
)
with open(prompt_path, "r", encoding="utf-8") as file:
prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
with open(video_path, "r", encoding="utf-8") as file:
video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
with open(tracking_path, "r", encoding="utf-8") as file:
tracking_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
with open(image_paths, "r", encoding="utf-8") as file:
image_paths_list = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
if not self.load_tensors and any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
)
self.tracking_paths = tracking_paths
self.image_paths = image_paths_list
return prompts, video_paths
def _load_dataset_from_csv(self) -> Tuple[List[str], List[str], List[str]]:
df = pd.read_csv(self.dataset_file)
prompts = df[self.caption_column].tolist()
video_paths = df[self.video_column].tolist()
tracking_paths = df[self.tracking_column].tolist()
image_paths = df[self.image_paths].tolist()
video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths]
tracking_paths = [self.data_root.joinpath(line.strip()) for line in tracking_paths]
image_paths = [self.data_root.joinpath(line.strip()) for line in image_paths]
if any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found at least one path that is not a valid file."
)
self.tracking_paths = tracking_paths
self.image_paths = image_paths
return prompts, video_paths
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
return index
if self.load_tensors:
image_latents, video_latents, prompt_embeds = self._preprocess_video(self.video_paths[index], self.tracking_paths[index])
# The VAE's temporal compression ratio is 4.
# The VAE's spatial compression ratio is 8.
latent_num_frames = video_latents.size(1)
if latent_num_frames % 2 == 0:
num_frames = latent_num_frames * 4
else:
num_frames = (latent_num_frames - 1) * 4 + 1
height = video_latents.size(2) * 8
width = video_latents.size(3) * 8
return {
"prompt": prompt_embeds,
"image": image_latents,
"video": video_latents,
"tracking_map": tracking_map,
"video_metadata": {
"num_frames": num_frames,
"height": height,
"width": width,
},
}
else:
image, video, tracking_map, _ = self._preprocess_video(self.video_paths[index], self.tracking_paths[index], self.image_paths[index])
return {
"prompt": self.id_token + self.prompts[index],
"image": image,
"video": video,
"tracking_map": tracking_map,
"video_metadata": {
"num_frames": video.shape[0],
"height": video.shape[2],
"width": video.shape[3],
},
}
def _load_preprocessed_latents_and_embeds(self, path: Path, tracking_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
filename_without_ext = path.name.split(".")[0]
pt_filename = f"{filename_without_ext}.pt"
# The current path is something like: /a/b/c/d/videos/00001.mp4
# We need to reach: /a/b/c/d/video_latents/00001.pt
image_latents_path = path.parent.parent.joinpath("image_latents")
video_latents_path = path.parent.parent.joinpath("video_latents")
tracking_map_path = path.parent.parent.joinpath("tracking_map")
embeds_path = path.parent.parent.joinpath("prompt_embeds")
if (
not video_latents_path.exists()
or not embeds_path.exists()
or not tracking_map_path.exists()
or (self.image_to_video and not image_latents_path.exists())
):
raise ValueError(
f"When setting the load_tensors parameter to `True`, it is expected that the `{self.data_root=}` contains folders named `video_latents`, `prompt_embeds`, and `tracking_map`. However, these folders were not found. Please make sure to have prepared your data correctly using `prepare_data.py`. Additionally, if you're training image-to-video, it is expected that an `image_latents` folder is also present."
)
if self.image_to_video:
image_latent_filepath = image_latents_path.joinpath(pt_filename)
video_latent_filepath = video_latents_path.joinpath(pt_filename)
tracking_map_filepath = tracking_map_path.joinpath(pt_filename)
embeds_filepath = embeds_path.joinpath(pt_filename)
if not video_latent_filepath.is_file() or not embeds_filepath.is_file() or not tracking_map_filepath.is_file():
if self.image_to_video:
image_latent_filepath = image_latent_filepath.as_posix()
video_latent_filepath = video_latent_filepath.as_posix()
tracking_map_filepath = tracking_map_filepath.as_posix()
embeds_filepath = embeds_filepath.as_posix()
raise ValueError(
f"The file {video_latent_filepath=} or {embeds_filepath=} or {tracking_map_filepath=} could not be found. Please ensure that you've correctly executed `prepare_dataset.py`."
)
images = (
torch.load(image_latent_filepath, map_location="cpu", weights_only=True) if self.image_to_video else None
)
latents = torch.load(video_latent_filepath, map_location="cpu", weights_only=True)
tracking_map = torch.load(tracking_map_filepath, map_location="cpu", weights_only=True)
embeds = torch.load(embeds_filepath, map_location="cpu", weights_only=True)
return images, latents, tracking_map, embeds
def sample_from_dataset(
data_root: str,
caption_column: str,
tracking_column: str,
image_paths: str,
video_column: str,
num_samples: int = -1,
random_seed: int = 42
):
"""Sample from dataset"""
if image_paths:
# If image_paths is provided, use VideoDatasetWithResizingTrackingEval
dataset = VideoDatasetWithResizingTrackingEval(
data_root=data_root,
caption_column=caption_column,
tracking_column=tracking_column,
image_paths=image_paths,
video_column=video_column,
max_num_frames=49,
load_tensors=False,
random_flip=None,
frame_buckets=[49],
image_to_video=True
)
else:
# If image_paths is not provided, use VideoDatasetWithResizingTracking
dataset = VideoDatasetWithResizingTracking(
data_root=data_root,
caption_column=caption_column,
tracking_column=tracking_column,
video_column=video_column,
max_num_frames=49,
load_tensors=False,
random_flip=None,
frame_buckets=[49],
image_to_video=True
)
# Set random seed
random.seed(random_seed)
# Randomly sample from dataset
total_samples = len(dataset)
if num_samples == -1:
# If num_samples is -1, process all samples
selected_indices = range(total_samples)
else:
selected_indices = random.sample(range(total_samples), min(num_samples, total_samples))
samples = []
for idx in selected_indices:
sample = dataset[idx]
# Get data based on dataset.__getitem__ return value
image = sample["image"] # Already processed tensor
video = sample["video"] # Already processed tensor
tracking_map = sample["tracking_map"] # Already processed tensor
prompt = sample["prompt"]
samples.append({
"prompt": prompt,
"tracking_frame": tracking_map[0], # Get first frame
"video_frame": image, # Get first frame
"video": video, # Complete video
"tracking_maps": tracking_map, # Complete tracking maps
"height": sample["video_metadata"]["height"],
"width": sample["video_metadata"]["width"]
})
return samples
def generate_video(
prompt: str,
model_path: str,
tracking_path: str = None,
output_path: str = "./output.mp4",
image_or_video_path: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
generate_type: str = Literal["i2v", "i2vo"], # i2v: image to video, i2vo: original CogVideoX-5b-I2V
seed: int = 42,
data_root: str = None,
caption_column: str = None,
tracking_column: str = None,
video_column: str = None,
image_paths: str = None,
num_samples: int = -1,
evaluation_dir: str = "evaluations",
fps: int = 8,
):
device = "cuda" if torch.cuda.is_available() else "cpu"
# If dataset parameters are provided, sample from dataset
samples = None
if all([data_root, caption_column, tracking_column, video_column]):
samples = sample_from_dataset(
data_root=data_root,
caption_column=caption_column,
tracking_column=tracking_column,
image_paths=image_paths,
video_column=video_column,
num_samples=num_samples,
random_seed=seed
)
# Load model and data
if generate_type == "i2v":
pipe = CogVideoXImageToVideoPipelineTracking.from_pretrained(model_path, torch_dtype=dtype)
if not samples:
image = load_image(image=image_or_video_path)
height, width = image.height, image.width
else:
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=dtype)
if not samples:
image = load_image(image=image_or_video_path)
height, width = image.height, image.width
# Set model parameters
pipe.to(device, dtype=dtype)
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
pipe.transformer.gradient_checkpointing = False
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Generate video
if samples:
from tqdm import tqdm
for i, sample in tqdm(enumerate(samples), desc="Samples Num:"):
print(f"Prompt: {sample['prompt'][:30]}")
tracking_frame = sample["tracking_frame"].to(device=device, dtype=dtype)
video_frame = sample["video_frame"].to(device=device, dtype=dtype)
video = sample["video"].to(device=device, dtype=dtype)
tracking_maps = sample["tracking_maps"].to(device=device, dtype=dtype)
# VAE
print("encoding tracking maps")
tracking_video = tracking_maps
tracking_maps = tracking_maps.unsqueeze(0)
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
with torch.no_grad():
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
pipeline_args = {
"prompt": sample["prompt"],
"negative_prompt": "The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
"num_inference_steps": num_inference_steps,
"num_frames": 49,
"use_dynamic_cfg": True,
"guidance_scale": guidance_scale,
"generator": torch.Generator(device=device).manual_seed(seed),
"height": sample["height"],
"width": sample["width"]
}
pipeline_args["image"] = (video_frame + 1.0) / 2.0
if tracking_column and generate_type == "i2v":
pipeline_args["tracking_maps"] = tracking_maps
pipeline_args["tracking_image"] = (tracking_frame.unsqueeze(0) + 1.0) / 2.0
with torch.no_grad():
video_generate = pipe(**pipeline_args).frames[0]
output_dir = os.path.join(data_root, evaluation_dir)
output_name = f"{i:04d}.mp4"
output_file = os.path.join(output_dir, output_name)
os.makedirs(output_dir, exist_ok=True)
export_concat_video(video_generate, video, tracking_video, output_file, fps=fps)
else:
pipeline_args = {
"prompt": prompt,
"num_videos_per_prompt": num_videos_per_prompt,
"num_inference_steps": num_inference_steps,
"num_frames": 49,
"use_dynamic_cfg": True,
"guidance_scale": guidance_scale,
"generator": torch.Generator().manual_seed(seed),
}
pipeline_args["video"] = video
pipeline_args["image"] = image
pipeline_args["height"] = height
pipeline_args["width"] = width
if tracking_path and generate_type == "i2v":
tracking_maps = load_video(tracking_path)
tracking_maps = torch.stack([
torch.from_numpy(np.array(frame)).permute(2, 0, 1).float() / 255.0
for frame in tracking_maps
]).to(device=device, dtype=dtype)
tracking_video = tracking_maps
tracking_maps = tracking_maps.unsqueeze(0)
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)
with torch.no_grad():
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)
pipeline_args["tracking_maps"] = tracking_maps
pipeline_args["tracking_image"] = tracking_maps[:, :1]
with torch.no_grad():
video_generate = pipe(**pipeline_args).frames[0]
output_dir = os.path.join(data_root, evaluation_dir)
output_name = f"{os.path.splitext(os.path.basename(image_or_video_path))[0]}.mp4"
output_file = os.path.join(output_dir, output_name)
os.makedirs(output_dir, exist_ok=True)
export_concat_video(video_generate, video, tracking_video, output_file, fps=fps)
def create_frame_grid(frames: List[np.ndarray], interval: int = 9, max_cols: int = 7) -> np.ndarray:
"""
Arrange video frames into a grid image by sampling at intervals
Args:
frames: List of video frames
interval: Sampling interval
max_cols: Maximum number of frames per row
Returns:
Grid image array
"""
# Sample frames at intervals
sampled_frames = frames[::interval]
# Calculate number of rows and columns
n_frames = len(sampled_frames)
n_cols = min(max_cols, n_frames)
n_rows = (n_frames + n_cols - 1) // n_cols
# Get height and width of single frame
frame_height, frame_width = sampled_frames[0].shape[:2]
# Create blank canvas
grid = np.zeros((frame_height * n_rows, frame_width * n_cols, 3), dtype=np.uint8)
# Fill frames
for idx, frame in enumerate(sampled_frames):
i = idx // n_cols
j = idx % n_cols
grid[i*frame_height:(i+1)*frame_height, j*frame_width:(j+1)*frame_width] = frame
return grid
def export_concat_video(
generated_frames: List[PIL.Image.Image],
original_video: torch.Tensor,
tracking_maps: torch.Tensor = None,
output_video_path: str = None,
fps: int = 8
) -> str:
"""
Export generated video frames, original video and tracking maps as video files,
and save sampled frames to different folders
"""
import imageio
import os
if output_video_path is None:
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
# Create subdirectories
base_dir = os.path.dirname(output_video_path)
generated_dir = os.path.join(base_dir, "generated") # For storing generated videos
group_dir = os.path.join(base_dir, "group") # For storing concatenated videos
# Get filename (without path) and create video-specific folder
filename = os.path.basename(output_video_path)
name_without_ext = os.path.splitext(filename)[0]
video_frames_dir = os.path.join(base_dir, "frames", name_without_ext) # frames/video_name/
# Create three subdirectories under video-specific folder
groundtruth_dir = os.path.join(video_frames_dir, "gt")
generated_frames_dir = os.path.join(video_frames_dir, "generated")
tracking_dir = os.path.join(video_frames_dir, "tracking")
# Create all required directories
os.makedirs(generated_dir, exist_ok=True)
os.makedirs(group_dir, exist_ok=True)
os.makedirs(groundtruth_dir, exist_ok=True)
os.makedirs(generated_frames_dir, exist_ok=True)
os.makedirs(tracking_dir, exist_ok=True)
# Convert original video tensor to numpy array and adjust format
original_frames = []
for frame in original_video:
frame = frame.permute(1,2,0).to(dtype=torch.float32,device="cpu").numpy()
frame = ((frame + 1.0) * 127.5).astype(np.uint8)
original_frames.append(frame)
tracking_frames = []
if tracking_maps is not None:
for frame in tracking_maps:
frame = frame.permute(1,2,0).to(dtype=torch.float32,device="cpu").numpy()
frame = ((frame + 1.0) * 127.5).astype(np.uint8)
tracking_frames.append(frame)
# Ensure all videos have same number of frames
num_frames = min(len(generated_frames), len(original_frames))
if tracking_maps is not None:
num_frames = min(num_frames, len(tracking_frames))
generated_frames = generated_frames[:num_frames]
original_frames = original_frames[:num_frames]
if tracking_maps is not None:
tracking_frames = tracking_frames[:num_frames]
# Convert generated PIL images to numpy arrays
generated_frames_np = [np.array(frame) for frame in generated_frames]
# Save generated video separately to generated folder
gen_video_path = os.path.join(generated_dir, f"{name_without_ext}_generated.mp4")
with imageio.get_writer(gen_video_path, fps=fps) as writer:
for frame in generated_frames_np:
writer.append_data(frame)
# Concatenate frames vertically and save sampled frames
concat_frames = []
for i in range(num_frames):
gen_frame = generated_frames_np[i]
orig_frame = original_frames[i]
width = min(gen_frame.shape[1], orig_frame.shape[1])
height = orig_frame.shape[0]
gen_frame = Image.fromarray(gen_frame).resize((width, height))
gen_frame = np.array(gen_frame)
orig_frame = Image.fromarray(orig_frame).resize((width, height))
orig_frame = np.array(orig_frame)
if tracking_maps is not None:
track_frame = tracking_frames[i]
track_frame = Image.fromarray(track_frame).resize((width, height))
track_frame = np.array(track_frame)
right_concat = np.concatenate([orig_frame, track_frame], axis=0)
right_concat_pil = Image.fromarray(right_concat)
new_height = right_concat.shape[0] // 2
new_width = right_concat.shape[1] // 2
right_concat_resized = right_concat_pil.resize((new_width, new_height))
right_concat_resized = np.array(right_concat_resized)
concat_frame = np.concatenate([gen_frame, right_concat_resized], axis=1)
else:
orig_frame_pil = Image.fromarray(orig_frame)
new_height = orig_frame.shape[0] // 2
new_width = orig_frame.shape[1] // 2
orig_frame_resized = orig_frame_pil.resize((new_width, new_height))
orig_frame_resized = np.array(orig_frame_resized)
concat_frame = np.concatenate([gen_frame, orig_frame_resized], axis=1)
concat_frames.append(concat_frame)
# Save every 9 frames of each type of frame
if i % 9 == 0:
# Save generated frame
gen_frame_path = os.path.join(generated_frames_dir, f"{i:04d}.png")
Image.fromarray(gen_frame).save(gen_frame_path)
# Save original frame
gt_frame_path = os.path.join(groundtruth_dir, f"{i:04d}.png")
Image.fromarray(orig_frame).save(gt_frame_path)
# If tracking maps, save tracking frame
if tracking_maps is not None:
track_frame_path = os.path.join(tracking_dir, f"{i:04d}.png")
Image.fromarray(track_frame).save(track_frame_path)
# Export concatenated video to group folder
group_video_path = os.path.join(group_dir, filename)
with imageio.get_writer(group_video_path, fps=fps) as writer:
for frame in concat_frames:
writer.append_data(frame)
return group_video_path
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, help="Optional: override the prompt from dataset")
parser.add_argument(
"--image_or_video_path",
type=str,
default=None,
help="The path of the image to be used as the background of the video",
)
parser.add_argument(
"--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
)
parser.add_argument(
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
)
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument(
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
)
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument(
"--generate_type", type=str, default="i2v", help="The type of video generation (e.g., 'i2v', 'i2vo')"
)
parser.add_argument(
"--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
)
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
parser.add_argument("--tracking_path", type=str, default=None, help="The path of the tracking maps to be used")
# Dataset related parameters are required
parser.add_argument("--data_root", type=str, required=True, help="Root directory of the dataset")
parser.add_argument("--caption_column", type=str, required=True, help="Name of the caption column")
parser.add_argument("--tracking_column", type=str, required=True, help="Name of the tracking column")
parser.add_argument("--video_column", type=str, required=True, help="Name of the video column")
parser.add_argument("--image_paths", type=str, required=False, help="Name of the image column")
# Add num_samples parameter
parser.add_argument("--num_samples", type=int, default=-1,
help="Number of samples to process. -1 means process all samples")
# Add evaluation_dir parameter
parser.add_argument("--evaluation_dir", type=str, default="evaluations",
help="Name of the directory to store evaluation results")
# Add fps parameter
parser.add_argument("--fps", type=int, default=8,
help="Frames per second for the output video")
args = parser.parse_args()
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
# If prompt is not provided, generate_video function will use prompts from dataset
generate_video(
prompt=args.prompt, # Can be None
model_path=args.model_path,
tracking_path=args.tracking_path,
image_paths=args.image_paths,
output_path=args.output_path,
image_or_video_path=args.image_or_video_path,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_videos_per_prompt=args.num_videos_per_prompt,
dtype=dtype,
generate_type=args.generate_type,
seed=args.seed,
data_root=args.data_root,
caption_column=args.caption_column,
tracking_column=args.tracking_column,
video_column=args.video_column,
num_samples=args.num_samples,
evaluation_dir=args.evaluation_dir,
fps=args.fps,
)