Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,207 Bytes
3aba902 c4fce07 a5e3686 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 a5e3686 c4fce07 a5e3686 c4fce07 3aba902 a5e3686 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 a5e3686 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 a5e3686 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 a5e3686 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 3aba902 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
import os
import sys
import gradio as gr
import torch
import argparse
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
from moviepy.editor import VideoFileClip
from diffusers.utils import load_image, load_video
import spaces
project_root = os.path.dirname(os.path.abspath(__file__))
os.environ["GRADIO_TEMP_DIR"] = os.path.join(project_root, "tmp", "gradio")
sys.path.append(project_root)
try:
sys.path.append(os.path.join(project_root, "submodules/MoGe"))
os.environ["TOKENIZERS_PARALLELISM"] = "false"
except:
print("Warning: MoGe not found, motion transfer will not be applied")
HERE_PATH = os.path.normpath(os.path.dirname(__file__))
sys.path.insert(0, HERE_PATH)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="EXCAI/Diffusion-As-Shader", filename='spatracker/spaT_final.pth', local_dir=f'{HERE_PATH}/checkpoints/')
from models.pipelines import DiffusionAsShaderPipeline, FirstFrameRepainter, CameraMotionGenerator, ObjectMotionGenerator
from submodules.MoGe.moge.model import MoGeModel
# Parse command line arguments
parser = argparse.ArgumentParser(description="Diffusion as Shader Web UI")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--share", action="store_true", help="Share the web UI")
parser.add_argument("--gpu", type=int, default=0, help="GPU device ID")
parser.add_argument("--model_path", type=str, default="EXCAI/Diffusion-As-Shader", help="Path to model checkpoint")
parser.add_argument("--output_dir", type=str, default="tmp", help="Output directory")
args = parser.parse_args()
# Use the original GPU ID throughout the entire code for consistency
GPU_ID = args.gpu
DEFAULT_MODEL_PATH = args.model_path
OUTPUT_DIR = args.output_dir
# Create necessary directories
os.makedirs("outputs", exist_ok=True)
# Create project tmp directory instead of using system temp
os.makedirs(os.path.join(project_root, "tmp"), exist_ok=True)
os.makedirs(os.path.join(project_root, "tmp", "gradio"), exist_ok=True)
def load_media(media_path, max_frames=49, transform=None):
"""Load video or image frames and convert to tensor
Args:
media_path (str): Path to video or image file
max_frames (int): Maximum number of frames to load
transform (callable): Transform to apply to frames
Returns:
Tuple[torch.Tensor, float, bool]: Video tensor [T,C,H,W], FPS, and is_video flag
"""
if transform is None:
transform = transforms.Compose([
transforms.Resize((480, 720)),
transforms.ToTensor()
])
# Determine if input is video or image based on extension
ext = os.path.splitext(media_path)[1].lower()
is_video = ext in ['.mp4', '.avi', '.mov']
if is_video:
frames = load_video(media_path)
fps = len(frames) / VideoFileClip(media_path).duration
else:
# Handle image as single frame
image = load_image(media_path)
frames = [image]
fps = 8 # Default fps for images
# Ensure we have exactly max_frames
if len(frames) > max_frames:
frames = frames[:max_frames]
elif len(frames) < max_frames:
last_frame = frames[-1]
while len(frames) < max_frames:
frames.append(last_frame.copy())
# Convert frames to tensor
video_tensor = torch.stack([transform(frame) for frame in frames])
return video_tensor, fps, is_video
def save_uploaded_file(file):
if file is None:
return None
# Use project tmp directory instead of system temp
temp_dir = os.path.join(project_root, "tmp")
if hasattr(file, 'name'):
filename = file.name
else:
# Generate a unique filename if name attribute is missing
import uuid
ext = ".tmp"
if hasattr(file, 'content_type'):
if "image" in file.content_type:
ext = ".png"
elif "video" in file.content_type:
ext = ".mp4"
filename = f"{uuid.uuid4()}{ext}"
temp_path = os.path.join(temp_dir, filename)
try:
# Check if file is a FileStorage object or already a path
if hasattr(file, 'save'):
file.save(temp_path)
elif isinstance(file, str):
# It's already a path
return file
else:
# Try to read and save the file
with open(temp_path, 'wb') as f:
f.write(file.read() if hasattr(file, 'read') else file)
except Exception as e:
print(f"Error saving file: {e}")
return None
return temp_path
das_pipeline = None
moge_model = None
@spaces.GPU
def get_das_pipeline():
global das_pipeline
if das_pipeline is None:
das_pipeline = DiffusionAsShaderPipeline(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
return das_pipeline
@spaces.GPU
def get_moge_model():
global moge_model
if moge_model is None:
das = get_das_pipeline()
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(das.device)
return moge_model
def process_motion_transfer(source, prompt, mt_repaint_option, mt_repaint_image):
"""Process video motion transfer task"""
try:
# Save uploaded files
input_video_path = save_uploaded_file(source)
if input_video_path is None:
return None
print(f"DEBUG: Repaint option: {mt_repaint_option}")
print(f"DEBUG: Repaint image: {mt_repaint_image}")
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_video_path)
if not is_video:
tracking_method = "moge"
print("Image input detected, using MoGe for tracking video generation.")
else:
tracking_method = "spatracker"
repaint_img_tensor = None
if mt_repaint_image is not None:
repaint_path = save_uploaded_file(mt_repaint_image)
repaint_img_tensor, _, _ = load_media(repaint_path)
repaint_img_tensor = repaint_img_tensor[0]
elif mt_repaint_option == "Yes":
repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
repaint_img_tensor = repainter.repaint(
video_tensor[0],
prompt=prompt,
depth_path=None
)
tracking_tensor = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
cam_motion = CameraMotionGenerator(None)
cam_motion.set_intr(infer_result["intrinsics"])
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
_, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
pred_tracks, pred_visibility, T_Firsts = das.generate_tracking_spatracker(video_tensor)
_, tracking_tensor = das.visualize_tracking_spatracker(video_tensor, pred_tracks, pred_visibility, T_Firsts)
print('Export tracking video via SpaTracker')
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=8,
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None
def process_camera_control(source, prompt, camera_motion, tracking_method):
"""Process camera control task"""
try:
# Save uploaded files
input_media_path = save_uploaded_file(source)
if input_media_path is None:
return None
print(f"DEBUG: Camera motion: '{camera_motion}'")
print(f"DEBUG: Tracking method: '{tracking_method}'")
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_media_path)
if not is_video and tracking_method == "spatracker":
tracking_method = "moge"
print("Image input detected with spatracker selected, switching to MoGe")
cam_motion = CameraMotionGenerator(camera_motion)
repaint_img_tensor = None
tracking_tensor = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
cam_motion.set_intr(infer_result["intrinsics"])
if camera_motion:
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
print("Camera motion applied")
else:
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
_, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
pred_tracks, pred_visibility, T_Firsts = das.generate_tracking_spatracker(video_tensor)
if camera_motion:
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
pred_tracks = cam_motion.apply_motion_on_pts(pred_tracks, poses)
print("Camera motion applied")
_, tracking_tensor = das.visualize_tracking_spatracker(video_tensor, pred_tracks, pred_visibility, T_Firsts)
print('Export tracking video via SpaTracker')
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=8,
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None
def process_object_manipulation(source, prompt, object_motion, object_mask, tracking_method):
"""Process object manipulation task"""
try:
# Save uploaded files
input_image_path = save_uploaded_file(source)
if input_image_path is None:
return None
object_mask_path = save_uploaded_file(object_mask)
if object_mask_path is None:
print("Object mask not provided")
return None
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_image_path)
if not is_video and tracking_method == "spatracker":
tracking_method = "moge"
print("Image input detected with spatracker selected, switching to MoGe")
mask_image = Image.open(object_mask_path).convert('L')
mask_image = transforms.Resize((480, 720))(mask_image)
mask = torch.from_numpy(np.array(mask_image) > 127)
motion_generator = ObjectMotionGenerator(device=das.device)
repaint_img_tensor = None
tracking_tensor = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
pred_tracks = motion_generator.apply_motion(
pred_tracks=pred_tracks,
mask=mask,
motion_type=object_motion,
distance=50,
num_frames=49,
tracking_method="moge"
)
print(f"Object motion '{object_motion}' applied using provided mask")
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
cam_motion = CameraMotionGenerator(None)
cam_motion.set_intr(infer_result["intrinsics"])
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
_, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
pred_tracks, pred_visibility, T_Firsts = das.generate_tracking_spatracker(video_tensor)
pred_tracks = motion_generator.apply_motion(
pred_tracks=pred_tracks.squeeze(),
mask=mask,
motion_type=object_motion,
distance=50,
num_frames=49,
tracking_method="spatracker"
).unsqueeze(0)
print(f"Object motion '{object_motion}' applied using provided mask")
_, tracking_tensor = das.visualize_tracking_spatracker(video_tensor, pred_tracks, pred_visibility, T_Firsts)
print('Export tracking video via SpaTracker')
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=8,
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None
def process_mesh_animation(source, prompt, tracking_video, ma_repaint_option, ma_repaint_image):
"""Process mesh animation task"""
try:
# Save uploaded files
input_video_path = save_uploaded_file(source)
if input_video_path is None:
return None
tracking_video_path = save_uploaded_file(tracking_video)
if tracking_video_path is None:
return None
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_video_path)
tracking_tensor, tracking_fps, _ = load_media(tracking_video_path)
repaint_img_tensor = None
if ma_repaint_image is not None:
repaint_path = save_uploaded_file(ma_repaint_image)
repaint_img_tensor, _, _ = load_media(repaint_path)
repaint_img_tensor = repaint_img_tensor[0] # 获取第一帧
elif ma_repaint_option == "Yes":
repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
repaint_img_tensor = repainter.repaint(
video_tensor[0],
prompt=prompt,
depth_path=None
)
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=8,
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None
# Create Gradio interface with updated layout
with gr.Blocks(title="Diffusion as Shader") as demo:
gr.Markdown("# Diffusion as Shader Web UI")
gr.Markdown("### [Project Page](https://igl-hkust.github.io/das/) | [GitHub](https://github.com/IGL-HKUST/DiffusionAsShader)")
with gr.Row():
left_column = gr.Column(scale=1)
right_column = gr.Column(scale=1)
with right_column:
output_video = gr.Video(label="Generated Video")
with left_column:
source = gr.File(label="Source", file_types=["image", "video"])
common_prompt = gr.Textbox(label="Prompt", lines=2)
gr.Markdown(f"**Using GPU: {GPU_ID}**")
with gr.Tabs() as task_tabs:
# Motion Transfer tab
with gr.TabItem("Motion Transfer"):
gr.Markdown("## Motion Transfer")
# Simplified controls - Radio buttons for Yes/No and separate file upload
with gr.Row():
mt_repaint_option = gr.Radio(
label="Repaint First Frame",
choices=["No", "Yes"],
value="No"
)
gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
# Custom image uploader (always visible)
mt_repaint_image = gr.File(
label="Custom Repaint Image",
file_types=["image"]
)
# Add run button for Motion Transfer tab
mt_run_btn = gr.Button("Run Motion Transfer", variant="primary", size="lg")
# Connect to process function
mt_run_btn.click(
fn=process_motion_transfer,
inputs=[
source, common_prompt,
mt_repaint_option, mt_repaint_image
],
outputs=[output_video]
)
# Camera Control tab
with gr.TabItem("Camera Control"):
gr.Markdown("## Camera Control")
cc_camera_motion = gr.Textbox(
label="Current Camera Motion Sequence",
placeholder="Your camera motion sequence will appear here...",
interactive=False
)
# Use tabs for different motion types
with gr.Tabs() as cc_motion_tabs:
# Translation tab
with gr.TabItem("Translation (trans)"):
with gr.Row():
cc_trans_x = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="X-axis Movement")
cc_trans_y = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Y-axis Movement")
cc_trans_z = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Z-axis Movement (depth)")
with gr.Row():
cc_trans_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
cc_trans_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
cc_trans_note = gr.Markdown("""
**Translation Notes:**
- Positive X: Move right, Negative X: Move left
- Positive Y: Move down, Negative Y: Move up
- Positive Z: Zoom in, Negative Z: Zoom out
""")
# Add translation button in the Translation tab
cc_add_trans = gr.Button("Add Camera Translation", variant="secondary")
# Function to add translation motion
def add_translation_motion(current_motion, trans_x, trans_y, trans_z, trans_start, trans_end):
# Format: trans dx dy dz [start_frame end_frame]
frame_range = f" {int(trans_start)} {int(trans_end)}" if trans_start != 0 or trans_end != 48 else ""
new_motion = f"trans {trans_x:.2f} {trans_y:.2f} {trans_z:.2f}{frame_range}"
# Append to existing motion string with semicolon separator if needed
if current_motion and current_motion.strip():
updated_motion = f"{current_motion}; {new_motion}"
else:
updated_motion = new_motion
return updated_motion
# Connect translation button
cc_add_trans.click(
fn=add_translation_motion,
inputs=[
cc_camera_motion,
cc_trans_x, cc_trans_y, cc_trans_z, cc_trans_start, cc_trans_end
],
outputs=[cc_camera_motion]
)
# Rotation tab
with gr.TabItem("Rotation (rot)"):
with gr.Row():
cc_rot_axis = gr.Dropdown(choices=["x", "y", "z"], value="y", label="Rotation Axis")
cc_rot_angle = gr.Slider(minimum=-30, maximum=30, value=5, step=1, label="Rotation Angle (degrees)")
with gr.Row():
cc_rot_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
cc_rot_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
cc_rot_note = gr.Markdown("""
**Rotation Notes:**
- X-axis rotation: Tilt camera up/down
- Y-axis rotation: Pan camera left/right
- Z-axis rotation: Roll camera
""")
# Add rotation button in the Rotation tab
cc_add_rot = gr.Button("Add Camera Rotation", variant="secondary")
# Function to add rotation motion
def add_rotation_motion(current_motion, rot_axis, rot_angle, rot_start, rot_end):
# Format: rot axis angle [start_frame end_frame]
frame_range = f" {int(rot_start)} {int(rot_end)}" if rot_start != 0 or rot_end != 48 else ""
new_motion = f"rot {rot_axis} {rot_angle}{frame_range}"
# Append to existing motion string with semicolon separator if needed
if current_motion and current_motion.strip():
updated_motion = f"{current_motion}; {new_motion}"
else:
updated_motion = new_motion
return updated_motion
# Connect rotation button
cc_add_rot.click(
fn=add_rotation_motion,
inputs=[
cc_camera_motion,
cc_rot_axis, cc_rot_angle, cc_rot_start, cc_rot_end
],
outputs=[cc_camera_motion]
)
# Add a clear button to reset the motion sequence
cc_clear_motion = gr.Button("Clear All Motions", variant="stop")
def clear_camera_motion():
return ""
cc_clear_motion.click(
fn=clear_camera_motion,
inputs=[],
outputs=[cc_camera_motion]
)
cc_tracking_method = gr.Radio(
label="Tracking Method",
choices=["spatracker", "moge"],
value="moge"
)
# Add run button for Camera Control tab
cc_run_btn = gr.Button("Run Camera Control", variant="primary", size="lg")
# Connect to process function
cc_run_btn.click(
fn=process_camera_control,
inputs=[
source, common_prompt,
cc_camera_motion, cc_tracking_method
],
outputs=[output_video]
)
# Object Manipulation tab
with gr.TabItem("Object Manipulation"):
gr.Markdown("## Object Manipulation")
om_object_mask = gr.File(
label="Object Mask Image",
file_types=["image"]
)
gr.Markdown("Upload a binary mask image, white areas indicate the object to manipulate")
om_object_motion = gr.Dropdown(
label="Object Motion Type",
choices=["up", "down", "left", "right", "front", "back", "rot"],
value="up"
)
om_tracking_method = gr.Radio(
label="Tracking Method",
choices=["spatracker", "moge"],
value="moge"
)
# Add run button for Object Manipulation tab
om_run_btn = gr.Button("Run Object Manipulation", variant="primary", size="lg")
# Connect to process function
om_run_btn.click(
fn=process_object_manipulation,
inputs=[
source, common_prompt,
om_object_motion, om_object_mask, om_tracking_method
],
outputs=[output_video]
)
# Animating meshes to video tab
with gr.TabItem("Animating meshes to video"):
gr.Markdown("## Mesh Animation to Video")
gr.Markdown("""
Note: Currently only supports tracking videos generated with Blender (version > 4.0).
Please run the script `scripts/blender.py` in your Blender project to generate tracking videos.
""")
ma_tracking_video = gr.File(
label="Tracking Video",
file_types=["video"]
)
gr.Markdown("Tracking video needs to be generated from Blender")
# Simplified controls - Radio buttons for Yes/No and separate file upload
with gr.Row():
ma_repaint_option = gr.Radio(
label="Repaint First Frame",
choices=["No", "Yes"],
value="No"
)
gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
# Custom image uploader (always visible)
ma_repaint_image = gr.File(
label="Custom Repaint Image",
file_types=["image"]
)
# Add run button for Mesh Animation tab
ma_run_btn = gr.Button("Run Mesh Animation", variant="primary", size="lg")
# Connect to process function
ma_run_btn.click(
fn=process_mesh_animation,
inputs=[
source, common_prompt,
ma_tracking_video, ma_repaint_option, ma_repaint_image
],
outputs=[output_video]
)
# Launch interface
if __name__ == "__main__":
print(f"Using GPU: {GPU_ID}")
print(f"Web UI will start on port {args.port}")
if args.share:
print("Creating public link for remote access")
# Launch interface
demo.launch(share=args.share, server_port=args.port) |