Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,505 Bytes
3aba902 182f943 3aba902 c4fce07 182f943 3aba902 c4fce07 5b2a969 c4fce07 3aba902 c4fce07 5b2a969 3aba902 9db1e11 3aba902 5b2a969 c4fce07 5b2a969 9db1e11 5b2a969 c4fce07 5b2a969 c4fce07 5b2a969 c4fce07 3aba902 c4fce07 5b2a969 c4fce07 a5e3686 c4fce07 a5e3686 c4fce07 3aba902 5b2a969 a5e3686 3aba902 9db1e11 3aba902 9db1e11 3aba902 c4fce07 5b2a969 c4fce07 5b2a969 3aba902 c4fce07 3aba902 c4fce07 3aba902 c4fce07 5b2a969 c4fce07 5b2a969 c4fce07 5b2a969 c4fce07 3aba902 5b2a969 182f943 5b2a969 c4fce07 9db1e11 3aba902 9db1e11 a5e3686 3aba902 9db1e11 3aba902 9db1e11 3aba902 c4fce07 5b2a969 c4fce07 5b2a969 c4fce07 182f943 5b2a969 9db1e11 5b2a969 c4fce07 5b2a969 c4fce07 5b2a969 9db1e11 5b2a969 3aba902 9db1e11 3aba902 9db1e11 a5e3686 3aba902 9db1e11 3aba902 c4fce07 9db1e11 3aba902 c4fce07 5b2a969 c4fce07 5b2a969 c4fce07 5b2a969 c4fce07 3aba902 182f943 c4fce07 9db1e11 c4fce07 5b2a969 c4fce07 9db1e11 5b2a969 c4fce07 9db1e11 3aba902 9db1e11 a5e3686 3aba902 9db1e11 3aba902 9db1e11 3aba902 c4fce07 5b2a969 c4fce07 3aba902 c4fce07 3aba902 c4fce07 9db1e11 3aba902 9db1e11 3aba902 182f943 9db1e11 93b1556 9db1e11 93b1556 9db1e11 3aba902 9db1e11 3aba902 5b2a969 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 3aba902 9db1e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 |
import os
import sys
import spaces
import gradio as gr
import torch
import argparse
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
from moviepy.editor import VideoFileClip
from diffusers.utils import load_image, load_video
from tqdm import tqdm
from image_gen_aux import DepthPreprocessor
project_root = os.path.dirname(os.path.abspath(__file__))
os.environ["GRADIO_TEMP_DIR"] = os.path.join(project_root, "tmp", "gradio")
sys.path.append(project_root)
try:
sys.path.append(os.path.join(project_root, "submodules/MoGe"))
sys.path.append(os.path.join(project_root, "submodules/vggt"))
os.environ["TOKENIZERS_PARALLELISM"] = "false"
except:
print("Warning: MoGe not found, motion transfer will not be applied")
HERE_PATH = os.path.normpath(os.path.dirname(__file__))
sys.path.insert(0, HERE_PATH)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="EXCAI/Diffusion-As-Shader", filename='spatracker/spaT_final.pth', local_dir=f'{HERE_PATH}/checkpoints/')
from models.pipelines import DiffusionAsShaderPipeline, FirstFrameRepainter, CameraMotionGenerator, ObjectMotionGenerator
from submodules.MoGe.moge.model import MoGeModel
from submodules.vggt.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from submodules.vggt.vggt.models.vggt import VGGT
import torch._dynamo
torch._dynamo.config.suppress_errors = True
# Parse command line arguments
parser = argparse.ArgumentParser(description="Diffusion as Shader Web UI")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--share", action="store_true", help="Share the web UI")
parser.add_argument("--gpu", type=int, default=0, help="GPU device ID")
parser.add_argument("--model_path", type=str, default="EXCAI/Diffusion-As-Shader", help="Path to model checkpoint")
parser.add_argument("--output_dir", type=str, default="tmp", help="Output directory")
args = parser.parse_args()
# Use the original GPU ID throughout the entire code for consistency
GPU_ID = args.gpu
DEFAULT_MODEL_PATH = args.model_path
OUTPUT_DIR = args.output_dir
# Create necessary directories
os.makedirs("outputs", exist_ok=True)
# Create project tmp directory instead of using system temp
os.makedirs(os.path.join(project_root, "tmp"), exist_ok=True)
os.makedirs(os.path.join(project_root, "tmp", "gradio"), exist_ok=True)
def load_media(media_path, max_frames=49, transform=None):
"""Load video or image frames and convert to tensor
Args:
media_path (str): Path to video or image file
max_frames (int): Maximum number of frames to load
transform (callable): Transform to apply to frames
Returns:
Tuple[torch.Tensor, float, bool]: Video tensor [T,C,H,W], FPS, and is_video flag
"""
if transform is None:
transform = transforms.Compose([
transforms.Resize((480, 720)),
transforms.ToTensor()
])
# Determine if input is video or image based on extension
ext = os.path.splitext(media_path)[1].lower()
is_video = ext in ['.mp4', '.avi', '.mov']
if is_video:
# Load video file info
video_clip = VideoFileClip(media_path)
duration = video_clip.duration
original_fps = video_clip.fps
# Case 1: Video longer than 6 seconds, sample first 6 seconds + 1 frame
if duration > 6.0:
# 使用 max_frames 参数而不是 sampling_fps
frames = load_video(media_path, max_frames=max_frames)
fps = max_frames / 6.0 # 计算等效的 fps
# Cases 2 and 3: Video shorter than 6 seconds
else:
# Load all frames
frames = load_video(media_path)
# Case 2: Total frames less than max_frames, need interpolation
if len(frames) < max_frames:
fps = len(frames) / duration # Keep original fps
# Evenly interpolate to max_frames
indices = np.linspace(0, len(frames) - 1, max_frames)
new_frames = []
for i in indices:
idx = int(i)
new_frames.append(frames[idx])
frames = new_frames
# Case 3: Total frames more than max_frames but video less than 6 seconds
else:
# Evenly sample to max_frames
indices = np.linspace(0, len(frames) - 1, max_frames)
new_frames = []
for i in indices:
idx = int(i)
new_frames.append(frames[idx])
frames = new_frames
fps = max_frames / duration # New fps to maintain duration
else:
# Handle image as single frame
image = load_image(media_path)
frames = [image]
fps = 8 # Default fps for images
# Duplicate frame to max_frames
while len(frames) < max_frames:
frames.append(frames[0].copy())
# Convert frames to tensor
video_tensor = torch.stack([transform(frame) for frame in frames])
return video_tensor, fps, is_video
def save_uploaded_file(file):
if file is None:
return None
# Use project tmp directory instead of system temp
temp_dir = os.path.join(project_root, "tmp")
if hasattr(file, 'name'):
filename = file.name
else:
# Generate a unique filename if name attribute is missing
import uuid
ext = ".tmp"
if hasattr(file, 'content_type'):
if "image" in file.content_type:
ext = ".png"
elif "video" in file.content_type:
ext = ".mp4"
filename = f"{uuid.uuid4()}{ext}"
temp_path = os.path.join(temp_dir, filename)
try:
# Check if file is a FileStorage object or already a path
if hasattr(file, 'save'):
file.save(temp_path)
elif isinstance(file, str):
# It's already a path
return file
else:
# Try to read and save the file
with open(temp_path, 'wb') as f:
f.write(file.read() if hasattr(file, 'read') else file)
except Exception as e:
print(f"Error saving file: {e}")
return None
return temp_path
das_pipeline = None
moge_model = None
vggt_model = None
@spaces.GPU
def get_das_pipeline():
global das_pipeline
if das_pipeline is None:
das_pipeline = DiffusionAsShaderPipeline(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
return das_pipeline
@spaces.GPU
def get_moge_model():
global moge_model
if moge_model is None:
das = get_das_pipeline()
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(das.device)
return moge_model
@spaces.GPU
def get_vggt_model():
global vggt_model
if vggt_model is None:
das = get_das_pipeline()
vggt_model = VGGT.from_pretrained("facebook/VGGT-1B").to(das.device)
return vggt_model
def process_motion_transfer(source, prompt, mt_repaint_option, mt_repaint_image):
"""Process video motion transfer task"""
try:
# 保存上传的文件
input_video_path = save_uploaded_file(source)
if input_video_path is None:
return None, None, None
print(f"DEBUG: Repaint option: {mt_repaint_option}")
print(f"DEBUG: Repaint image: {mt_repaint_image}")
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_video_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
if not is_video:
tracking_method = "moge"
print("Image input detected, using MoGe for tracking video generation.")
else:
tracking_method = "cotracker"
repaint_img_tensor = None
if mt_repaint_image is not None:
repaint_path = save_uploaded_file(mt_repaint_image)
repaint_img_tensor, _, _ = load_media(repaint_path)
repaint_img_tensor = repaint_img_tensor[0]
elif mt_repaint_option == "Yes":
repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
repaint_img_tensor = repainter.repaint(
video_tensor[0],
prompt=prompt,
depth_path=None
)
tracking_tensor = None
tracking_path = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
cam_motion = CameraMotionGenerator(None)
cam_motion.set_intr(infer_result["intrinsics"])
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
tracking_path, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
# 使用 cotracker
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks, pred_visibility)
print('Export tracking video via cotracker')
# 返回处理结果,但不应用跟踪
return tracking_path, video_tensor, tracking_tensor, repaint_img_tensor, fps
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None, None, None, None
def process_camera_control(source, prompt, camera_motion, tracking_method):
"""Process camera control task"""
try:
# 保存上传的文件
input_media_path = save_uploaded_file(source)
if input_media_path is None:
return None, None, None
print(f"DEBUG: Camera motion: '{camera_motion}'")
print(f"DEBUG: Tracking method: '{tracking_method}'")
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_media_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
if not is_video:
tracking_method = "moge"
print("Image input detected, switching to MoGe")
cam_motion = CameraMotionGenerator(camera_motion)
repaint_img_tensor = None
tracking_tensor = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
cam_motion.set_intr(infer_result["intrinsics"])
if camera_motion:
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
print("Camera motion applied")
else:
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
_, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
# 使用在CPU上运行的cotracker
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
# 使用封装的 VGGT 处理函数
extr, intr = process_vggt(video_tensor)
cam_motion.set_intr(intr)
cam_motion.set_extr(extr)
if camera_motion:
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
pred_tracks_world = cam_motion.s2w_vggt(pred_tracks, extr, intr)
pred_tracks = cam_motion.w2s_vggt(pred_tracks_world, extr, intr, poses) # [T, N, 3]
print("Camera motion applied")
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks, pred_visibility)
print('Export tracking video via cotracker')
# 返回处理结果,但不应用跟踪
return tracking_path, video_tensor, tracking_tensor, repaint_img_tensor, fps
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None, None, None, None
def process_object_manipulation(source, prompt, object_motion, object_mask, tracking_method):
"""Process object manipulation task"""
try:
# Save uploaded files
input_image_path = save_uploaded_file(source)
if input_image_path is None:
return None, None, None, None, None
object_mask_path = save_uploaded_file(object_mask)
if object_mask_path is None:
print("Object mask not provided")
return None, None, None, None, None
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_image_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
if not is_video:
tracking_method = "moge"
print("Image input detected, switching to MoGe")
mask_image = Image.open(object_mask_path).convert('L')
mask_image = transforms.Resize((480, 720))(mask_image)
mask = torch.from_numpy(np.array(mask_image) > 127)
motion_generator = ObjectMotionGenerator(device=das.device)
repaint_img_tensor = None
tracking_tensor = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
pred_tracks = motion_generator.apply_motion(
pred_tracks=pred_tracks,
mask=mask,
motion_type=object_motion,
distance=50,
num_frames=49,
tracking_method="moge"
)
print(f"Object motion '{object_motion}' applied using provided mask")
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
cam_motion = CameraMotionGenerator(None)
cam_motion.set_intr(infer_result["intrinsics"])
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
_, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
# 使用在CPU上运行的cotracker
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
# 使用封装的 VGGT 处理函数
extr, intr = process_vggt(video_tensor)
pred_tracks = motion_generator.apply_motion(
pred_tracks=pred_tracks.squeeze(),
mask=mask,
motion_type=object_motion,
distance=50,
num_frames=49,
tracking_method="cotracker"
)
print(f"Object motion '{object_motion}' applied using provided mask")
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks.unsqueeze(0), pred_visibility)
print('Export tracking video via cotracker')
# 返回处理结果,但不应用跟踪
return tracking_path, video_tensor, tracking_tensor, repaint_img_tensor, fps
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None, None, None, None
def process_mesh_animation(source, prompt, tracking_video, ma_repaint_option, ma_repaint_image):
"""Process mesh animation task"""
try:
# Save uploaded files
input_video_path = save_uploaded_file(source)
if input_video_path is None:
return None, None, None, None, None
tracking_video_path = save_uploaded_file(tracking_video)
if tracking_video_path is None:
return None, None, None, None, None
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_video_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
tracking_tensor, tracking_fps, _ = load_media(tracking_video_path)
repaint_img_tensor = None
if ma_repaint_image is not None:
repaint_path = save_uploaded_file(ma_repaint_image)
repaint_img_tensor, _, _ = load_media(repaint_path)
repaint_img_tensor = repaint_img_tensor[0] # 获取第一帧
elif ma_repaint_option == "Yes":
repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
repaint_img_tensor = repainter.repaint(
video_tensor[0],
prompt=prompt,
depth_path=None
)
# 直接返回上传的跟踪视频路径,而不是生成新的跟踪视频
return tracking_video_path, video_tensor, tracking_tensor, repaint_img_tensor, fps
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None, None, None, None
def generate_tracking_cotracker(video_tensor, density=30):
"""在CPU上生成跟踪视频,只使用第一帧的深度信息,使用矩阵运算提高效率
参数:
video_tensor (torch.Tensor): 输入视频张量
density (int): 跟踪点的密度
返回:
tuple: (pred_tracks, pred_visibility)
"""
cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_offline").to("cpu")
depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti").to("cpu")
video = video_tensor.unsqueeze(0).to("cpu")
# 只处理第一帧以获取深度图
print("estimating depth for first frame...")
frame = (video_tensor[0].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
# 获取跟踪点和可见性
print("tracking on CPU...")
pred_tracks, pred_visibility = cotracker(video, grid_size=density) # B T N 2, B T N 1
# 提取维度
B, T, N, _ = pred_tracks.shape
H, W = depth_tensor.shape[1], depth_tensor.shape[2]
# 创建带深度的输出张量
pred_tracks_with_depth = torch.zeros((B, T, N, 3), device="cpu")
pred_tracks_with_depth[:, :, :, :2] = pred_tracks # 复制x,y坐标
# 使用矩阵运算一次性处理所有帧和点
# 重塑pred_tracks为[B*T*N, 2]以便于处理
flat_tracks = pred_tracks.reshape(-1, 2)
# 将坐标限制在有效图像边界内
x_coords = flat_tracks[:, 0].clamp(0, W-1).long()
y_coords = flat_tracks[:, 1].clamp(0, H-1).long()
# 从第一帧的深度图获取所有点的深度值
depths = depth_tensor[0, y_coords, x_coords]
# 重塑回原始形状并分配给输出张量
pred_tracks_with_depth[:, :, :, 2] = depths.reshape(B, T, N)
del cotracker,depth_preprocessor
# 将结果返回
return pred_tracks_with_depth.squeeze(0), pred_visibility.squeeze(0)
@spaces.GPU(duration=240)
def apply_tracking_unified(video_tensor, tracking_tensor, repaint_img_tensor, prompt, fps):
"""统一的应用跟踪函数"""
try:
if video_tensor is None or tracking_tensor is None:
return None
das = get_das_pipeline()
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=fps,
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
print(f"生成的视频路径: {output_path}")
# 确保返回的是绝对路径
if output_path and not os.path.isabs(output_path):
output_path = os.path.abspath(output_path)
# 检查文件是否存在
if output_path and os.path.exists(output_path):
print(f"文件存在,大小: {os.path.getsize(output_path)} 字节")
return output_path
else:
print(f"警告: 输出文件不存在或路径无效: {output_path}")
return None
except Exception as e:
import traceback
print(f"Apply tracking failed: {str(e)}\n{traceback.format_exc()}")
return None
# 添加在 apply_tracking_unified 函数之后,Gradio 界面定义之前
def enable_apply_button(tracking_result):
"""当跟踪视频生成后启用应用按钮"""
if tracking_result is not None:
return gr.update(interactive=True)
return gr.update(interactive=False)
@spaces.GPU
def process_vggt(video_tensor):
vggt_model = get_vggt_model()
t, c, h, w = video_tensor.shape
new_width = 518
new_height = round(h * (new_width / w) / 14) * 14
resize_transform = transforms.Resize((new_height, new_width), interpolation=Image.BICUBIC)
video_vggt = resize_transform(video_tensor) # [T, C, H, W]
if new_height > 518:
start_y = (new_height - 518) // 2
video_vggt = video_vggt[:, :, start_y:start_y + 518, :]
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.float16):
video_vggt = video_vggt.unsqueeze(0) # [1, T, C, H, W]
aggregated_tokens_list, ps_idx = vggt_model.aggregator(video_vggt.to("cuda"))
extr, intr = pose_encoding_to_extri_intri(vggt_model.camera_head(aggregated_tokens_list)[-1], video_vggt.shape[-2:])
return extr, intr
def load_examples():
"""加载示例文件路径"""
samples_dir = os.path.join(project_root, "samples")
if not os.path.exists(samples_dir):
print(f"Warning: Samples directory not found at {samples_dir}")
return []
examples_list = []
# 为每个示例集创建一个示例项
# 示例1
example1 = [None] * 5 # [source, repaint_image, prompt, tracking_video, result_video]
for filename in os.listdir(samples_dir):
if filename.startswith("sample1_"):
if filename.endswith("_raw.mp4"):
example1[0] = os.path.join(samples_dir, filename)
elif filename.endswith("_repaint.png"):
example1[1] = os.path.join(samples_dir, filename)
elif filename.endswith("_tracking.mp4"):
example1[3] = os.path.join(samples_dir, filename)
elif filename.endswith("_result.mp4"):
example1[4] = os.path.join(samples_dir, filename)
# 设置示例1的提示文本
example2[2] = "A wonderful bright old-fasion red car is riding from left to right sun light is shining on the car, its reflection glittering. In the background is a deserted city in the noon, the roads and buildings are covered with green vegetation."
# 示例2
example2 = [None] * 5 # [source, repaint_image, prompt, tracking_video, result_video]
for filename in os.listdir(samples_dir):
if filename.startswith("sample2_"):
if filename.endswith("_raw.mp4"):
example2[0] = os.path.join(samples_dir, filename)
elif filename.endswith("_repaint.png"):
example2[1] = os.path.join(samples_dir, filename)
elif filename.endswith("_tracking.mp4"):
example2[3] = os.path.join(samples_dir, filename)
elif filename.endswith("_result.mp4"):
example2[4] = os.path.join(samples_dir, filename)
# 设置示例2的提示文本
example1[2] = "a rocket lifts off from the table and smoke erupt from its bottom."
# 添加示例到列表
if example1[0] is not None and example1[3] is not None:
examples_list.append(example1)
if example2[0] is not None and example2[3] is not None:
examples_list.append(example2)
# 添加其他示例(如果有)
sample_prefixes = set()
for filename in os.listdir(samples_dir):
if filename.endswith(('.mp4', '.png')):
prefix = filename.split('_')[0]
if prefix not in ["sample1", "sample2"]:
sample_prefixes.add(prefix)
for prefix in sorted(sample_prefixes):
example = [None] * 5 # [source, repaint_image, prompt, tracking_video, result_video]
for filename in os.listdir(samples_dir):
if filename.startswith(f"{prefix}_"):
if filename.endswith("_raw.mp4"):
example[0] = os.path.join(samples_dir, filename)
elif filename.endswith("_repaint.png"):
example[1] = os.path.join(samples_dir, filename)
elif filename.endswith("_tracking.mp4"):
example[3] = os.path.join(samples_dir, filename)
elif filename.endswith("_result.mp4"):
example[4] = os.path.join(samples_dir, filename)
# 添加默认提示文本
example[2] = "A beautiful scene"
# 只有当至少有源文件和跟踪视频时才添加示例
if example[0] is not None and example[3] is not None:
examples_list.append(example)
return examples_list
# Create Gradio interface with updated layout
with gr.Blocks(title="Diffusion as Shader") as demo:
gr.Markdown("# Diffusion as Shader Web UI")
gr.Markdown("### [Project Page](https://igl-hkust.github.io/das/) | [GitHub](https://github.com/IGL-HKUST/DiffusionAsShader)")
# 创建隐藏状态变量来存储中间结果
video_tensor_state = gr.State(None)
tracking_tensor_state = gr.State(None)
repaint_img_tensor_state = gr.State(None)
fps_state = gr.State(None)
with gr.Row():
left_column = gr.Column(scale=1)
right_column = gr.Column(scale=1)
with right_column:
tracking_video = gr.Video(label="Tracking Video")
# 初始状态下按钮不可用
apply_tracking_btn = gr.Button("Generate Video", variant="primary", size="lg", interactive=False)
output_video = gr.Video(label="Generated Video")
with left_column:
source_upload = gr.UploadButton("1. Upload Source", file_types=["image", "video"])
source_preview = gr.Video(label="Source Preview")
gr.Markdown("Upload a video or image, We will extract the motion and space structure from it")
# 上传文件后更新预览
def update_source_preview(file):
if file is None:
return None
path = save_uploaded_file(file)
return path
source_upload.upload(
fn=update_source_preview,
inputs=[source_upload],
outputs=[source_preview]
)
common_prompt = gr.Textbox(label="2. Prompt: Describe the scene and the motion you want to create", lines=2)
gr.Markdown(f"**Using GPU: {GPU_ID}**")
with gr.Tabs() as task_tabs:
# Motion Transfer tab
with gr.TabItem("Motion Transfer"):
gr.Markdown("## Motion Transfer")
# Simplified controls - Radio buttons for Yes/No and separate file upload
with gr.Row():
mt_repaint_option = gr.Radio(
label="Repaint First Frame",
choices=["No", "Yes"],
value="No"
)
gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
mt_repaint_upload = gr.UploadButton("3. Upload Repaint Image (Optional)", file_types=["image"])
mt_repaint_preview = gr.Image(label="Repaint Image Preview")
# 上传文件后更新预览
mt_repaint_upload.upload(
fn=update_source_preview, # 复用相同的函数
inputs=[mt_repaint_upload],
outputs=[mt_repaint_preview]
)
# Add run button for Motion Transfer tab
mt_run_btn = gr.Button("Generate Tracking", variant="primary", size="lg")
# Connect to process function, but don't apply tracking
mt_run_btn.click(
fn=process_motion_transfer,
inputs=[
source_upload, common_prompt,
mt_repaint_option, mt_repaint_upload
],
outputs=[tracking_video, video_tensor_state, tracking_tensor_state, repaint_img_tensor_state, fps_state]
).then(
fn=enable_apply_button,
inputs=[tracking_video],
outputs=[apply_tracking_btn]
)
# # Camera Control tab
# with gr.TabItem("Camera Control"):
# gr.Markdown("## Camera Control")
# cc_camera_motion = gr.Textbox(
# label="Current Camera Motion Sequence",
# placeholder="Your camera motion sequence will appear here...",
# interactive=False
# )
# # Use tabs for different motion types
# with gr.Tabs() as cc_motion_tabs:
# # Translation tab
# with gr.TabItem("Translation (trans)"):
# with gr.Row():
# cc_trans_x = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="X-axis Movement")
# cc_trans_y = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Y-axis Movement")
# cc_trans_z = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Z-axis Movement (depth)")
# with gr.Row():
# cc_trans_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
# cc_trans_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
# cc_trans_note = gr.Markdown("""
# **Translation Notes:**
# - Positive X: Move right, Negative X: Move left
# - Positive Y: Move down, Negative Y: Move up
# - Positive Z: Zoom in, Negative Z: Zoom out
# """)
# # Add translation button in the Translation tab
# cc_add_trans = gr.Button("Add Camera Translation", variant="secondary")
# # Function to add translation motion
# def add_translation_motion(current_motion, trans_x, trans_y, trans_z, trans_start, trans_end):
# # Format: trans dx dy dz [start_frame end_frame]
# frame_range = f" {int(trans_start)} {int(trans_end)}" if trans_start != 0 or trans_end != 48 else ""
# new_motion = f"trans {trans_x:.2f} {trans_y:.2f} {trans_z:.2f}{frame_range}"
# # Append to existing motion string with semicolon separator if needed
# if current_motion and current_motion.strip():
# updated_motion = f"{current_motion}; {new_motion}"
# else:
# updated_motion = new_motion
# return updated_motion
# # Connect translation button
# cc_add_trans.click(
# fn=add_translation_motion,
# inputs=[
# cc_camera_motion,
# cc_trans_x, cc_trans_y, cc_trans_z, cc_trans_start, cc_trans_end
# ],
# outputs=[cc_camera_motion]
# )
# # Rotation tab
# with gr.TabItem("Rotation (rot)"):
# with gr.Row():
# cc_rot_axis = gr.Dropdown(choices=["x", "y", "z"], value="y", label="Rotation Axis")
# cc_rot_angle = gr.Slider(minimum=-30, maximum=30, value=5, step=1, label="Rotation Angle (degrees)")
# with gr.Row():
# cc_rot_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
# cc_rot_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
# cc_rot_note = gr.Markdown("""
# **Rotation Notes:**
# - X-axis rotation: Tilt camera up/down
# - Y-axis rotation: Pan camera left/right
# - Z-axis rotation: Roll camera
# """)
# # Add rotation button in the Rotation tab
# cc_add_rot = gr.Button("Add Camera Rotation", variant="secondary")
# # Function to add rotation motion
# def add_rotation_motion(current_motion, rot_axis, rot_angle, rot_start, rot_end):
# # Format: rot axis angle [start_frame end_frame]
# frame_range = f" {int(rot_start)} {int(rot_end)}" if rot_start != 0 or rot_end != 48 else ""
# new_motion = f"rot {rot_axis} {rot_angle}{frame_range}"
# # Append to existing motion string with semicolon separator if needed
# if current_motion and current_motion.strip():
# updated_motion = f"{current_motion}; {new_motion}"
# else:
# updated_motion = new_motion
# return updated_motion
# # Connect rotation button
# cc_add_rot.click(
# fn=add_rotation_motion,
# inputs=[
# cc_camera_motion,
# cc_rot_axis, cc_rot_angle, cc_rot_start, cc_rot_end
# ],
# outputs=[cc_camera_motion]
# )
# # Add a clear button to reset the motion sequence
# cc_clear_motion = gr.Button("Clear All Motions", variant="stop")
# def clear_camera_motion():
# return ""
# cc_clear_motion.click(
# fn=clear_camera_motion,
# inputs=[],
# outputs=[cc_camera_motion]
# )
# cc_tracking_method = gr.Radio(
# label="Tracking Method",
# choices=["moge", "cotracker"],
# value="cotracker"
# )
# # Add run button for Camera Control tab
# cc_run_btn = gr.Button("Generate Tracking", variant="primary", size="lg")
# # Connect to process function, but don't apply tracking
# cc_run_btn.click(
# fn=process_camera_control,
# inputs=[
# source_upload, common_prompt,
# cc_camera_motion, cc_tracking_method
# ],
# outputs=[tracking_video, video_tensor_state, tracking_tensor_state, repaint_img_tensor_state, fps_state]
# ).then(
# fn=enable_apply_button,
# inputs=[tracking_video],
# outputs=[apply_tracking_btn]
# )
# # Object Manipulation tab
# with gr.TabItem("Object Manipulation"):
# gr.Markdown("## Object Manipulation")
# om_object_mask = gr.File(
# label="Object Mask Image",
# file_types=["image"]
# )
# gr.Markdown("Upload a binary mask image, white areas indicate the object to manipulate")
# om_object_motion = gr.Dropdown(
# label="Object Motion Type",
# choices=["up", "down", "left", "right", "front", "back", "rot"],
# value="up"
# )
# om_tracking_method = gr.Radio(
# label="Tracking Method",
# choices=["moge", "cotracker"],
# value="cotracker"
# )
# # Add run button for Object Manipulation tab
# om_run_btn = gr.Button("Generate Tracking", variant="primary", size="lg")
# # Connect to process function, but don't apply tracking
# om_run_btn.click(
# fn=process_object_manipulation,
# inputs=[
# source_upload, common_prompt,
# om_object_motion, om_object_mask, om_tracking_method
# ],
# outputs=[tracking_video, video_tensor_state, tracking_tensor_state, repaint_img_tensor_state, fps_state]
# ).then(
# fn=enable_apply_button,
# inputs=[tracking_video],
# outputs=[apply_tracking_btn]
# )
# # Animating meshes to video tab
# with gr.TabItem("Animating meshes to video"):
# gr.Markdown("## Mesh Animation to Video")
# gr.Markdown("""
# Note: Currently only supports tracking videos generated with Blender (version > 4.0).
# Please run the script `scripts/blender.py` in your Blender project to generate tracking videos.
# """)
# ma_tracking_video = gr.File(
# label="Tracking Video",
# file_types=["video"],
# # 添加 change 事件处理器,当上传文件时自动激活 Generate Video 按钮
# elem_id="ma_tracking_video"
# )
# gr.Markdown("Tracking video needs to be generated from Blender")
# # Simplified controls - Radio buttons for Yes/No and separate file upload
# with gr.Row():
# ma_repaint_option = gr.Radio(
# label="Repaint First Frame",
# choices=["No", "Yes"],
# value="No"
# )
# gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
# # Custom image uploader (always visible)
# ma_repaint_image = gr.File(
# label="Custom Repaint Image",
# file_types=["image"]
# )
# # 修改按钮名称为 "Apply Repaint"
# ma_run_btn = gr.Button("Apply Repaint", variant="primary", size="lg")
# # 添加 tracking video 上传事件处理
# def handle_tracking_upload(file):
# if file is not None:
# tracking_path = save_uploaded_file(file)
# if tracking_path:
# return tracking_path, gr.update(interactive=True)
# return None, gr.update(interactive=False)
# # 当上传 tracking video 时,直接显示并激活 Generate Video 按钮
# ma_tracking_video.change(
# fn=handle_tracking_upload,
# inputs=[ma_tracking_video],
# outputs=[tracking_video, apply_tracking_btn]
# )
# # 修改 process_mesh_animation 函数的行为
# def process_mesh_animation_repaint(source, prompt, ma_repaint_option, ma_repaint_image):
# """只处理重绘部分,不处理跟踪视频"""
# try:
# # 保存上传的文件
# input_video_path = save_uploaded_file(source)
# if input_video_path is None:
# return None, None, None, None
# das = get_das_pipeline()
# video_tensor, fps, is_video = load_media(input_video_path)
# das.fps = fps
# repaint_img_tensor = None
# if ma_repaint_image is not None:
# repaint_path = save_uploaded_file(ma_repaint_image)
# repaint_img_tensor, _, _ = load_media(repaint_path)
# repaint_img_tensor = repaint_img_tensor[0]
# elif ma_repaint_option == "Yes":
# repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
# repaint_img_tensor = repainter.repaint(
# video_tensor[0],
# prompt=prompt,
# depth_path=None
# )
# # 返回处理结果,但不包括跟踪视频路径
# return video_tensor, None, repaint_img_tensor, fps
# except Exception as e:
# import traceback
# print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
# return None, None, None, None
# # 连接到修改后的处理函数
# ma_run_btn.click(
# fn=process_mesh_animation_repaint,
# inputs=[
# source_upload, common_prompt,
# ma_repaint_option, ma_repaint_image
# ],
# outputs=[video_tensor_state, tracking_tensor_state, repaint_img_tensor_state, fps_state]
# )
# 在所有 UI 元素定义之后,添加 Examples 组件
examples_list = load_examples()
if examples_list:
with gr.Blocks() as examples_block:
gr.Examples(
examples=examples_list,
inputs=[source_preview, mt_repaint_preview, common_prompt, tracking_video, output_video],
outputs=[source_preview, mt_repaint_preview, common_prompt, tracking_video, output_video],
fn=lambda *args: args, # 简单地返回输入作为输出
cache_examples=True,
label="Examples"
)
# Launch interface
if __name__ == "__main__":
print(f"Using GPU: {GPU_ID}")
print(f"Web UI will start on port {args.port}")
if args.share:
print("Creating public link for remote access")
# Launch interface
demo.launch(share=args.share, server_port=args.port) |