Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,159 Bytes
0aaa1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class T5FilmDecoder(ModelMixin, ConfigMixin):
r"""
T5 style decoder with FiLM conditioning.
Args:
input_dims (`int`, *optional*, defaults to `128`):
The number of input dimensions.
targets_length (`int`, *optional*, defaults to `256`):
The length of the targets.
d_model (`int`, *optional*, defaults to `768`):
Size of the input hidden states.
num_layers (`int`, *optional*, defaults to `12`):
The number of `DecoderLayer`'s to use.
num_heads (`int`, *optional*, defaults to `12`):
The number of attention heads to use.
d_kv (`int`, *optional*, defaults to `64`):
Size of the key-value projection vectors.
d_ff (`int`, *optional*, defaults to `2048`):
The number of dimensions in the intermediate feed-forward layer of `DecoderLayer`'s.
dropout_rate (`float`, *optional*, defaults to `0.1`):
Dropout probability.
"""
@register_to_config
def __init__(
self,
input_dims: int = 128,
targets_length: int = 256,
max_decoder_noise_time: float = 2000.0,
d_model: int = 768,
num_layers: int = 12,
num_heads: int = 12,
d_kv: int = 64,
d_ff: int = 2048,
dropout_rate: float = 0.1,
):
super().__init__()
self.conditioning_emb = nn.Sequential(
nn.Linear(d_model, d_model * 4, bias=False),
nn.SiLU(),
nn.Linear(d_model * 4, d_model * 4, bias=False),
nn.SiLU(),
)
self.position_encoding = nn.Embedding(targets_length, d_model)
self.position_encoding.weight.requires_grad = False
self.continuous_inputs_projection = nn.Linear(input_dims, d_model, bias=False)
self.dropout = nn.Dropout(p=dropout_rate)
self.decoders = nn.ModuleList()
for lyr_num in range(num_layers):
# FiLM conditional T5 decoder
lyr = DecoderLayer(d_model=d_model, d_kv=d_kv, num_heads=num_heads, d_ff=d_ff, dropout_rate=dropout_rate)
self.decoders.append(lyr)
self.decoder_norm = T5LayerNorm(d_model)
self.post_dropout = nn.Dropout(p=dropout_rate)
self.spec_out = nn.Linear(d_model, input_dims, bias=False)
def encoder_decoder_mask(self, query_input: torch.FloatTensor, key_input: torch.FloatTensor) -> torch.FloatTensor:
mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2))
return mask.unsqueeze(-3)
def forward(self, encodings_and_masks, decoder_input_tokens, decoder_noise_time):
batch, _, _ = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
time_steps = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time,
embedding_dim=self.config.d_model,
max_period=self.config.max_decoder_noise_time,
).to(dtype=self.dtype)
conditioning_emb = self.conditioning_emb(time_steps).unsqueeze(1)
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
seq_length = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
decoder_positions = torch.broadcast_to(
torch.arange(seq_length, device=decoder_input_tokens.device),
(batch, seq_length),
)
position_encodings = self.position_encoding(decoder_positions)
inputs = self.continuous_inputs_projection(decoder_input_tokens)
inputs += position_encodings
y = self.dropout(inputs)
# decoder: No padding present.
decoder_mask = torch.ones(
decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype
)
# Translate encoding masks to encoder-decoder masks.
encodings_and_encdec_masks = [(x, self.encoder_decoder_mask(decoder_mask, y)) for x, y in encodings_and_masks]
# cross attend style: concat encodings
encoded = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1)
encoder_decoder_mask = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1)
for lyr in self.decoders:
y = lyr(
y,
conditioning_emb=conditioning_emb,
encoder_hidden_states=encoded,
encoder_attention_mask=encoder_decoder_mask,
)[0]
y = self.decoder_norm(y)
y = self.post_dropout(y)
spec_out = self.spec_out(y)
return spec_out
class DecoderLayer(nn.Module):
r"""
T5 decoder layer.
Args:
d_model (`int`):
Size of the input hidden states.
d_kv (`int`):
Size of the key-value projection vectors.
num_heads (`int`):
Number of attention heads.
d_ff (`int`):
Size of the intermediate feed-forward layer.
dropout_rate (`float`):
Dropout probability.
layer_norm_epsilon (`float`, *optional*, defaults to `1e-6`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(
self, d_model: int, d_kv: int, num_heads: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float = 1e-6
):
super().__init__()
self.layer = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
T5LayerSelfAttentionCond(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate)
)
# cross attention: layer 1
self.layer.append(
T5LayerCrossAttention(
d_model=d_model,
d_kv=d_kv,
num_heads=num_heads,
dropout_rate=dropout_rate,
layer_norm_epsilon=layer_norm_epsilon,
)
)
# Film Cond MLP + dropout: last layer
self.layer.append(
T5LayerFFCond(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon)
)
def forward(
self,
hidden_states: torch.FloatTensor,
conditioning_emb: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
encoder_decoder_position_bias=None,
) -> Tuple[torch.FloatTensor]:
hidden_states = self.layer[0](
hidden_states,
conditioning_emb=conditioning_emb,
attention_mask=attention_mask,
)
if encoder_hidden_states is not None:
encoder_extended_attention_mask = torch.where(encoder_attention_mask > 0, 0, -1e10).to(
encoder_hidden_states.dtype
)
hidden_states = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_extended_attention_mask,
)
# Apply Film Conditional Feed Forward layer
hidden_states = self.layer[-1](hidden_states, conditioning_emb)
return (hidden_states,)
class T5LayerSelfAttentionCond(nn.Module):
r"""
T5 style self-attention layer with conditioning.
Args:
d_model (`int`):
Size of the input hidden states.
d_kv (`int`):
Size of the key-value projection vectors.
num_heads (`int`):
Number of attention heads.
dropout_rate (`float`):
Dropout probability.
"""
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float):
super().__init__()
self.layer_norm = T5LayerNorm(d_model)
self.FiLMLayer = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
self.dropout = nn.Dropout(dropout_rate)
def forward(
self,
hidden_states: torch.FloatTensor,
conditioning_emb: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
# pre_self_attention_layer_norm
normed_hidden_states = self.layer_norm(hidden_states)
if conditioning_emb is not None:
normed_hidden_states = self.FiLMLayer(normed_hidden_states, conditioning_emb)
# Self-attention block
attention_output = self.attention(normed_hidden_states)
hidden_states = hidden_states + self.dropout(attention_output)
return hidden_states
class T5LayerCrossAttention(nn.Module):
r"""
T5 style cross-attention layer.
Args:
d_model (`int`):
Size of the input hidden states.
d_kv (`int`):
Size of the key-value projection vectors.
num_heads (`int`):
Number of attention heads.
dropout_rate (`float`):
Dropout probability.
layer_norm_epsilon (`float`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float, layer_norm_epsilon: float):
super().__init__()
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
self.dropout = nn.Dropout(dropout_rate)
def forward(
self,
hidden_states: torch.FloatTensor,
key_value_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
encoder_hidden_states=key_value_states,
attention_mask=attention_mask.squeeze(1),
)
layer_output = hidden_states + self.dropout(attention_output)
return layer_output
class T5LayerFFCond(nn.Module):
r"""
T5 style feed-forward conditional layer.
Args:
d_model (`int`):
Size of the input hidden states.
d_ff (`int`):
Size of the intermediate feed-forward layer.
dropout_rate (`float`):
Dropout probability.
layer_norm_epsilon (`float`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(self, d_model: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float):
super().__init__()
self.DenseReluDense = T5DenseGatedActDense(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate)
self.film = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
self.dropout = nn.Dropout(dropout_rate)
def forward(
self, hidden_states: torch.FloatTensor, conditioning_emb: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
forwarded_states = self.layer_norm(hidden_states)
if conditioning_emb is not None:
forwarded_states = self.film(forwarded_states, conditioning_emb)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class T5DenseGatedActDense(nn.Module):
r"""
T5 style feed-forward layer with gated activations and dropout.
Args:
d_model (`int`):
Size of the input hidden states.
d_ff (`int`):
Size of the intermediate feed-forward layer.
dropout_rate (`float`):
Dropout probability.
"""
def __init__(self, d_model: int, d_ff: int, dropout_rate: float):
super().__init__()
self.wi_0 = nn.Linear(d_model, d_ff, bias=False)
self.wi_1 = nn.Linear(d_model, d_ff, bias=False)
self.wo = nn.Linear(d_ff, d_model, bias=False)
self.dropout = nn.Dropout(dropout_rate)
self.act = NewGELUActivation()
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
class T5LayerNorm(nn.Module):
r"""
T5 style layer normalization module.
Args:
hidden_size (`int`):
Size of the input hidden states.
eps (`float`, `optional`, defaults to `1e-6`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(self, hidden_size: int, eps: float = 1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class NewGELUActivation(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
class T5FiLMLayer(nn.Module):
"""
T5 style FiLM Layer.
Args:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
"""
def __init__(self, in_features: int, out_features: int):
super().__init__()
self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False)
def forward(self, x: torch.FloatTensor, conditioning_emb: torch.FloatTensor) -> torch.FloatTensor:
emb = self.scale_bias(conditioning_emb)
scale, shift = torch.chunk(emb, 2, -1)
x = x * (1 + scale) + shift
return x
|