seekdeep / APM.js
Drjkedwards's picture
Create APM.js
a068328 verified
---
license: apache-2.0
language:
- en
base_model:
- mradermacher/oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF
- openai/whisper-large-v3-turbo
pipeline_tag: memory-management
inference_api: true
title: Adaptive Memory Architecture (AMA)
description: >
A biomimetic, multi-tier memory management system designed to revolutionize
how AI systems process, store, and retrieve information. Featuring dynamic
semantic embedding, intelligent relationship tracking, and adaptive memory compression.
key_features:
- Multi-tier memory management
- Semantic embedding integration
- Dynamic relationship inference
- Intelligent memory compression
- Contextually aware information processing
technical_details:
memory_tiers:
- volatile_short_term:
capacity: 10 items
characteristics:
- High-speed access
- Recent interactions
- Cache-like implementation
- persistent_long_term:
capacity: unlimited
characteristics:
- Important concept storage
- Hierarchical knowledge representation
- context_working_memory:
capacity: 5 items
characteristics:
- Current conversation state
- Active task parameters
performance_metrics:
retrieval_speed: O(log n)
semantic_similarity_calculation: cosine distance
memory_compression_ratio: adaptive
research_potential:
- Neuromorphic memory modeling
- Adaptive learning systems
- Cognitive architecture development
ethical_considerations:
- Transparent memory tracking
- Configurable confidence scoring
- Relationship type inference
usage:
- python
- memory_manager = MemoryManager()
- memory_manager.insert("AI ethics are crucial")
- results = memory_manager.retrieve("ethical AI")
---
class AdvancedMemoryManager {
constructor(config = {}) {
// Configurable embedding models
this.embeddingModels = {
default: new SemanticEmbedding(),
multilingual: new MultilingualEmbedding(),
specialized: {
text: new TextSpecificEmbedding(),
numerical: new NumericalEmbedding()
}
};
// Adaptive pruning configuration
this.pruningConfig = {
strategies: [
'temporal_decay',
'importance_score',
'relationship_density'
],
thresholds: {
maxMemorySize: config.maxMemorySize || 10000,
compressionTrigger: config.compressionTrigger || 0.8
}
};
// Advanced indexing for efficient retrieval
this.semanticIndex = new ApproximateNearestNeighborIndex();
}
async selectOptimalEmbeddingModel(content) {
// Dynamically select most appropriate embedding model
if (this.isMultilingualContent(content)) {
return this.embeddingModels.multilingual;
}
if (this.isNumericalContent(content)) {
return this.embeddingModels.specialized.numerical;
}
return this.embeddingModels.default;
}
async insert(content, options = {}) {
const embeddingModel = await this.selectOptimalEmbeddingModel(content);
const memoryItem = new MemoryItem(content, {
...options,
embeddingModel
});
// Advanced indexing and relationship tracking
this.semanticIndex.add(memoryItem);
this.trackRelationships(memoryItem);
return memoryItem;
}
async intelligentRetrieve(query, options = {}) {
const {
maxResults = 10,
similarityThreshold = 0.7,
includeRelated = true
} = options;
// Semantic and relationship-aware retrieval
const semanticResults = this.semanticIndex.search(query, {
maxResults,
threshold: similarityThreshold
});
if (includeRelated) {
return this.expandWithRelatedMemories(semanticResults);
}
return semanticResults;
}
async performMemoryCompression() {
const compressionCandidates = this.identifyCompressionCandidates();
const compressedMemories = compressionCandidates.map(this.compressMemory);
return {
originalCount: compressionCandidates.length,
compressedCount: compressedMemories.length,
compressionRatio: compressedMemories.length / compressionCandidates.length
};
}
}
const natural = require('natural');
const tf = require('@tensorflow/tfjs-node');
const { Word2Vec } = require('word2vec');
class SemanticEmbedding {
constructor() {
this.model = null;
this.vectorSize = 100;
}
async initialize() {
// Placeholder for more advanced embedding initialization
this.model = await tf.loadLayersModel('path/to/embedding/model');
}
async generateEmbedding(text) {
// Generate semantic vector representation
const tokens = natural.tokenize(text.toLowerCase());
const embedding = await this.model.predict(tokens);
return embedding;
}
calculateSemanticSimilarity(embedding1, embedding2) {
// Cosine similarity calculation
return tf.losses.cosineDistance(embedding1, embedding2);
}
}
class MemoryItem {
constructor(content, {
type = "text",
isFactual = 0.5,
source = null,
confidence = 0.5
} = {}) {
this.id = crypto.randomUUID(); // Unique identifier
this.content = content;
this.type = type;
this.isFactual = isFactual;
this.confidence = confidence;
this.source = source;
this.timestamp = Date.now();
this.accessCount = 0;
this.importance = 5;
this.embedding = null;
this.related = new Map(); // Enhanced relationship tracking
this.tags = new Set();
}
async computeEmbedding(embeddingService) {
this.embedding = await embeddingService.generateEmbedding(this.content);
}
addRelationship(memoryItem, weight = 1.0) {
this.related.set(memoryItem.id, {
memory: memoryItem,
weight: weight,
type: this.determineRelationshipType(memoryItem)
});
}
determineRelationshipType(memoryItem) {
// Semantic relationship type inference
const semanticDistance = this.calculateSemanticDistance(memoryItem);
if (semanticDistance < 0.2) return 'VERY_CLOSE';
if (semanticDistance < 0.5) return 'RELATED';
return 'DISTANT';
}
calculateSemanticDistance(memoryItem) {
// Placeholder for semantic distance calculation
return Math.random(); // Replace with actual embedding comparison
}
incrementAccess() {
this.accessCount++;
this.updateImportance();
}
updateImportance() {
// Dynamic importance calculation
this.importance = Math.min(
10,
5 + Math.log(this.accessCount + 1)
);
}
}
class MemoryTier {
constructor(name, {
maxCapacity = Infinity,
pruneStrategy = 'LRU'
} = {}) {
this.name = name;
this.items = new Map(); // Use Map for efficient lookups
this.maxCapacity = maxCapacity;
this.pruneStrategy = pruneStrategy;
}
insert(memoryItem) {
if (this.items.size >= this.maxCapacity) {
this.prune();
}
this.items.set(memoryItem.id, memoryItem);
}
prune() {
switch(this.pruneStrategy) {
case 'LRU':
const lruItem = Array.from(this.items.values())
.sort((a, b) => a.timestamp - b.timestamp)[0];
this.items.delete(lruItem.id);
break;
case 'LEAST_IMPORTANT':
const leastImportant = Array.from(this.items.values())
.sort((a, b) => a.importance - b.importance)[0];
this.items.delete(leastImportant.id);
break;
}
}
async retrieve(query, embeddingService, topK = 5) {
const queryEmbedding = await embeddingService.generateEmbedding(query);
const scoredResults = Array.from(this.items.values())
.map(item => ({
memory: item,
similarity: embeddingService.calculateSemanticSimilarity(
item.embedding,
queryEmbedding
)
}))
.sort((a, b) => b.similarity - a.similarity)
.slice(0, topK);
return scoredResults.map(r => r.memory);
}
}
class MemoryManager {
constructor() {
this.embeddingService = new SemanticEmbedding();
this.volatileShortTerm = new MemoryTier("Volatile Short-Term", {
maxCapacity: 10,
pruneStrategy: 'LRU'
});
this.persistentLongTerm = new MemoryTier("Persistent Long-Term");
this.contextWorkingMemory = new MemoryTier("Context/Working Memory", {
maxCapacity: 5
});
this.allMemories = new Map();
}
async initialize() {
await this.embeddingService.initialize();
}
async insert(content, options = {}) {
const memoryItem = new MemoryItem(content, options);
await memoryItem.computeEmbedding(this.embeddingService);
// Insert into all appropriate tiers
this.volatileShortTerm.insert(memoryItem);
this.persistentLongTerm.insert(memoryItem);
this.contextWorkingMemory.insert(memoryItem);
this.allMemories.set(memoryItem.id, memoryItem);
return memoryItem;
}
async retrieve(query, tier = null) {
if (tier) {
return tier.retrieve(query, this.embeddingService);
}
// Parallel retrieval across tiers
const results = await Promise.all([
this.volatileShortTerm.retrieve(query, this.embeddingService),
this.persistentLongTerm.retrieve(query, this.embeddingService),
this.contextWorkingMemory.retrieve(query, this.embeddingService)
]);
// Flatten and deduplicate results
return [...new Set(results.flat())];
}
async findSemanticallySimilar(memoryItem, threshold = 0.7) {
const similar = [];
for (let [, memory] of this.allMemories) {
if (memory.id !== memoryItem.id) {
const similarity = this.embeddingService.calculateSemanticSimilarity(
memory.embedding,
memoryItem.embedding
);
if (similarity >= threshold) {
similar.push({ memory, similarity });
}
}
}
return similar.sort((a, b) => b.similarity - a.similarity);
}
}
// Example Usage
async function demonstrateMemorySystem() {
const memoryManager = new MemoryManager();
await memoryManager.initialize();
// Insert memories
const aiEthicsMem = await memoryManager.insert(
"AI should be developed with strong ethical considerations",
{
type: "concept",
isFactual: 0.9,
confidence: 0.8
}
);
const aiResearchMem = await memoryManager.insert(
"Machine learning research is advancing rapidly",
{
type: "research",
isFactual: 0.95
}
);
// Create relationships
aiEthicsMem.addRelationship(aiResearchMem);
// Retrieve memories
const retrievedMemories = await memoryManager.retrieve("AI ethics");
console.log("Retrieved Memories:", retrievedMemories);
// Find semantically similar memories
const similarMemories = await memoryManager.findSemanticallySimilar(aiEthicsMem);
console.log("Similar Memories:", similarMemories);
}
demonstrateMemorySystem();
module.exports = { MemoryManager, MemoryItem, MemoryTier };
class AdvancedMemoryManager {
constructor(config = {}) {
// Configurable embedding models
this.embeddingModels = {
default: new SemanticEmbedding(),
multilingual: new MultilingualEmbedding(),
specialized: {
text: new TextSpecificEmbedding(),
numerical: new NumericalEmbedding()
}
};
// Adaptive pruning configuration
this.pruningConfig = {
strategies: [
'temporal_decay',
'importance_score',
'relationship_density'
],
thresholds: {
maxMemorySize: config.maxMemorySize || 10000,
compressionTrigger: config.compressionTrigger || 0.8
}
};
// Advanced indexing for efficient retrieval
this.semanticIndex = new ApproximateNearestNeighborIndex();
}
async selectOptimalEmbeddingModel(content) {
// Dynamically select most appropriate embedding model
if (this.isMultilingualContent(content)) {
return this.embeddingModels.multilingual;
}
if (this.isNumericalContent(content)) {
return this.embeddingModels.specialized.numerical;
}
return this.embeddingModels.default;
}
async insert(content, options = {}) {
const embeddingModel = await this.selectOptimalEmbeddingModel(content);
const memoryItem = new MemoryItem(content, {
...options,
embeddingModel
});
// Advanced indexing and relationship tracking
this.semanticIndex.add(memoryItem);
this.trackRelationships(memoryItem);
return memoryItem;
}
async intelligentRetrieve(query, options = {}) {
const {
maxResults = 10,
similarityThreshold = 0.7,
includeRelated = true
} = options;
// Semantic and relationship-aware retrieval
const semanticResults = this.semanticIndex.search(query, {
maxResults,
threshold: similarityThreshold
});
if (includeRelated) {
return this.expandWithRelatedMemories(semanticResults);
}
return semanticResults;
}
async performMemoryCompression() {
const compressionCandidates = this.identifyCompressionCandidates();
const compressedMemories = compressionCandidates.map(this.compressMemory);
return {
originalCount: compressionCandidates.length,
compressedCount: compressedMemories.length,
compressionRatio: compressedMemories.length / compressionCandidates.length
};
}
}
class MemoryTracer {
constructor() {
this.generationLog = new Map(); // Track memory generation lineage
this.redundancyMap = new Map(); // Track potential redundant memories
this.compressionMetrics = {
totalMemories: 0,
uniqueMemories: 0,
redundancyRate: 0,
compressionPotential: 0
};
}
trackGeneration(memoryItem, parentMemories = []) {
// Create a generation trace
const generationEntry = {
id: memoryItem.id,
timestamp: Date.now(),
content: memoryItem.content,
parents: parentMemories.map(m => m.id),
lineage: [
...parentMemories.flatMap(p =>
this.generationLog.get(p.id)?.lineage || []
),
memoryItem.id
]
};
this.generationLog.set(memoryItem.id, generationEntry);
this.updateRedundancyMetrics(memoryItem);
}
updateRedundancyMetrics(memoryItem) {
// Semantic similarity check for redundancy
const similarityThreshold = 0.9;
let redundancyCount = 0;
for (let [, existingMemory] of this.redundancyMap) {
const similarity = this.calculateSemanticSimilarity(
existingMemory.content,
memoryItem.content
);
if (similarity >= similarityThreshold) {
redundancyCount++;
this.redundancyMap.set(memoryItem.id, {
memory: memoryItem,
similarTo: existingMemory.id,
similarity: similarity
});
}
}
// Update compression metrics
this.compressionMetrics.totalMemories++;
this.compressionMetrics.redundancyRate =
(redundancyCount / this.compressionMetrics.totalMemories);
this.compressionMetrics.compressionPotential =
this.calculateCompressionPotential();
}
calculateSemanticSimilarity(content1, content2) {
// Placeholder for semantic similarity calculation
// In a real implementation, use embedding-based similarity
const words1 = new Set(content1.toLowerCase().split(/\s+/));
const words2 = new Set(content2.toLowerCase().split(/\s+/));
const intersection = new Set(
[...words1].filter(x => words2.has(x))
);
return intersection.size / Math.max(words1.size, words2.size);
}
calculateCompressionPotential() {
// Advanced compression potential calculation
const { totalMemories, redundancyRate } = this.compressionMetrics;
// Exponential decay of compression potential
return Math.min(1, Math.exp(-redundancyRate) *
(1 - 1 / (1 + totalMemories)));
}
compressMemories(memoryManager) {
const compressibleMemories = [];
// Identify memories for potential compression
for (let [id, redundancyEntry] of this.redundancyMap) {
if (redundancyEntry.similarity >= 0.9) {
compressibleMemories.push({
id: id,
similarTo: redundancyEntry.similarTo,
similarity: redundancyEntry.similarity
});
}
}
// Compression strategy
const compressionStrategy = (memories) => {
// Group similar memories
const memoryGroups = new Map();
memories.forEach(memoryInfo => {
const groupKey = memoryInfo.similarTo;
if (!memoryGroups.has(groupKey)) {
memoryGroups.set(groupKey, []);
}
memoryGroups.get(groupKey).push(memoryInfo);
});
// Merge similar memory groups
const mergedMemories = [];
for (let [baseId, group] of memoryGroups) {
const baseMemory = memoryManager.allMemories.get(baseId);
// Create a compressed representation
const compressedContent = this.createCompressedContent(
group.map(g =>
memoryManager.allMemories.get(g.id).content
)
);
// Create a new compressed memory item
const compressedMemory = new MemoryItem(compressedContent, {
type: baseMemory.type,
isFactual: baseMemory.isFactual,
confidence: Math.max(...group.map(g =>
memoryManager.allMemories.get(g.id).confidence
))
});
mergedMemories.push(compressedMemory);
}
return mergedMemories;
};
// Execute compression
const compressedMemories = compressionStrategy(compressibleMemories);
// Update memory manager
compressedMemories.forEach(memory => {
memoryManager.insert(memory);
});
// Log compression results
console.log('Memory Compression Report:', {
totalCompressed: compressibleMemories.length,
compressionPotential: this.compressionMetrics.compressionPotential
});
return compressedMemories;
}
createCompressedContent(contents) {
// Intelligently combine similar memory contents
const uniqueWords = new Set(
contents.flatMap(content =>
content.toLowerCase().split(/\s+/)
)
);
// Create a concise summary
return Array.from(uniqueWords).slice(0, 20).join(' ');
}
}
// Modify MemoryManager to incorporate tracing
class MemoryManager {
constructor() {
// ... existing constructor code ...
this.memoryTracer = new MemoryTracer();
}
async insert(content, options = {}, parentMemories = []) {
const memoryItem = new MemoryItem(content, options);
// Compute embedding and trace generation
await memoryItem.computeEmbedding(this.embeddingService);
this.memoryTracer.trackGeneration(memoryItem, parentMemories);
// ... existing insertion code ...
return memoryItem;
}
performMemoryCompression() {
return this.memoryTracer.compressMemories(this);
}
}
const crypto = require('crypto');
class MemoryItem {
constructor(content, options = {}) {
this.id = crypto.randomUUID();
this.content = content;
this.type = options.type || 'text';
this.isFactual = options.isFactual || 0.5;
this.confidence = options.confidence || 0.5;
this.timestamp = Date.now();
this.accessCount = 0;
this.importance = 5;
this.embedding = null;
this.related = new Map();
this.tags = new Set();
}
addRelationship(memoryItem, weight = 1.0) {
this.related.set(memoryItem.id, {
memory: memoryItem,
weight: weight,
type: this.determineRelationshipType(memoryItem)
});
}
determineRelationshipType(memoryItem) {
// Basic relationship type inference
const content1 = this.content.toLowerCase();
const content2 = memoryItem.content.toLowerCase();
const sharedWords = content1.split(' ')
.filter(word => content2.includes(word));
const similarityRatio = sharedWords.length /
Math.max(content1.split(' ').length, content2.split(' ').length);
if (similarityRatio > 0.5) return 'VERY_CLOSE';
if (similarityRatio > 0.2) return 'RELATED';
return 'DISTANT';
}
incrementAccess() {
this.accessCount++;
this.updateImportance();
}
updateImportance() {
// Dynamic importance calculation
this.importance = Math.min(
10,
5 + Math.log(this.accessCount + 1)
);
}
}
module.exports = MemoryItem;
class MemoryTier {
constructor(name, options = {}) {
this.name = name;
this.items = new Map();
this.maxCapacity = options.maxCapacity || Infinity;
this.pruneStrategy = options.pruneStrategy || 'LRU';
}
insert(memoryItem) {
if (this.items.size >= this.maxCapacity) {
this.prune();
}
this.items.set(memoryItem.id, memoryItem);
}
prune() {
switch(this.pruneStrategy) {
case 'LRU':
const oldestItem = Array.from(this.items.values())
.sort((a, b) => a.timestamp - b.timestamp)[0];
this.items.delete(oldestItem.id);
break;
case 'LEAST_IMPORTANT':
const leastImportant = Array.from(this.items.values())
.sort((a, b) => a.importance - b.importance)[0];
this.items.delete(leastImportant.id);
break;
}
}
retrieve(query) {
return Array.from(this.items.values())
.filter(item => item.content.includes(query));
}
}
module.exports = MemoryTier;
const MemoryItem = require('./memory-item');
const MemoryTier = require('./memory-tier');
const SemanticEmbedding = require('./semantic-embedding');
class MemoryManager {
constructor(config = {}) {
this.embeddingService = new SemanticEmbedding();
this.tiers = {
volatileShortTerm: new MemoryTier('Volatile Short-Term', {
maxCapacity: config.shortTermCapacity || 10
}),
persistentLongTerm: new MemoryTier('Persistent Long-Term'),
contextWorkingMemory: new MemoryTier('Context/Working Memory', {
maxCapacity: config.workingMemoryCapacity || 5
})
};
this.allMemories = new Map();
}
async insert(content, options = {}) {
const memoryItem = new MemoryItem(content, options);
// Insert into all tiers
Object.values(this.tiers).forEach(tier => {
tier.insert(memoryItem);
});
this.allMemories.set(memoryItem.id, memoryItem);
return memoryItem;
}
async retrieve(query) {
// Aggregate results from all tiers
const results = Object.values(this.tiers)
.flatMap(tier => tier.retrieve(query));
// Deduplicate and sort by importance
return [...new Set(results)]
.sort((a, b) => b.importance - a.importance);
}
async findSemanticallySimilar(memoryItem, threshold = 0.7) {
const similar = [];
for (let [, memory] of this.allMemories) {
if (memory.id !== memoryItem.id) {
const similarity = this.calculateSemanticSimilarity(
memory.content,
memoryItem.content
);
if (similarity >= threshold) {
similar.push({ memory, similarity });
}
}
}
return similar.sort((a, b) => b.similarity - a.similarity);
}
calculateSemanticSimilarity(content1, content2) {
// Simple similarity calculation
const words1 = new Set(content1.toLowerCase().split(/\s+/));
const words2 = new Set(content2.toLowerCase().split(/\s+/));
const intersection = new Set(
[...words1].filter(x => words2.has(x))
);
return intersection.size / Math.max(words1.size, words2.size);
}
}
module.exports = MemoryManager;
class SemanticEmbedding {
constructor() {
this.embeddingCache = new Map();
}
async generateEmbedding(text) {
// Check cache first
if (this.embeddingCache.has(text)) {
return this.embeddingCache.get(text);
}
// Simple embedding generation
const tokens = text.toLowerCase().split(/\s+/);
const embedding = tokens.map(token => this.simpleTokenEmbedding(token));
// Cache the embedding
this.embeddingCache.set(text, embedding);
return embedding;
}
simpleTokenEmbedding(token) {
// Very basic embedding - just a numerical representation
return token.split('').map(char => char.charCodeAt(0));
}
calculateSemanticSimilarity(embedding1, embedding2) {
// Cosine similarity approximation
const dotProduct = embedding1.reduce(
(sum, val, i) => sum + val * (embedding2[i] || 0),
0
);
const magnitude1 = Math.sqrt(
embedding1.reduce((sum, val) => sum + val * val, 0)
);
const magnitude2 = Math.sqrt(
embedding2.reduce((sum, val) => sum + val * val, 0)
);
return dotProduct / (magnitude1 * magnitude2);
}
}