Spaces:
Sleeping
Sleeping
File size: 12,139 Bytes
fc4ce9d 51d1d4f fc4ce9d 51d1d4f 52578a6 51d1d4f 60297bb 51d1d4f 60297bb 51d1d4f 60453ba 51d1d4f 60453ba b66466a 51d1d4f 06e96cc d877997 51d1d4f 06e96cc 51d1d4f 06e96cc 51d1d4f 06e96cc 51d1d4f 60297bb 51d1d4f 60297bb 51d1d4f 60297bb 51d1d4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import sys
import os
import re
import shutil
import time
import fitz
import streamlit as st
import nltk
import tempfile
import subprocess
# Pin NLTK to version 3.9.1
REQUIRED_NLTK_VERSION = "3.9.1"
subprocess.run([sys.executable, "-m", "pip", "install", f"nltk=={REQUIRED_NLTK_VERSION}"])
# Set up temporary directory for NLTK resources
nltk_data_path = os.path.join(tempfile.gettempdir(), "nltk_data")
os.makedirs(nltk_data_path, exist_ok=True)
nltk.data.path.append(nltk_data_path)
# Download 'punkt_tab' for compatibility
try:
print("Ensuring NLTK 'punkt_tab' resource is downloaded...")
nltk.download("punkt_tab", download_dir=nltk_data_path)
except Exception as e:
print(f"Error downloading NLTK 'punkt_tab': {e}")
raise e
sys.path.append(os.path.abspath("."))
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from patent_downloader import PatentDownloader
PERSISTED_DIRECTORY = tempfile.mkdtemp()
# Fetch API key securely from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
st.stop()
def check_poppler_installed():
if not shutil.which("pdfinfo"):
raise EnvironmentError(
"Poppler is not installed or not in PATH. Install 'poppler-utils' for PDF processing."
)
check_poppler_installed()
def extract_patent_number(url):
pattern = r"/patent/([A-Z]{2}\d+)"
match = re.search(pattern, url)
return match.group(1) if match else None
def download_pdf(patent_number):
try:
patent_downloader = PatentDownloader(verbose=True)
output_path = patent_downloader.download(patents=patent_number, output_path=tempfile.gettempdir())
return output_path[0]
except Exception as e:
st.error(f"Failed to download patent PDF: {e}")
st.stop()
def clean_extracted_text(text):
"""
Cleans extracted text to remove metadata, headers, and irrelevant content.
"""
lines = text.split("\n")
cleaned_lines = []
for line in lines:
line = line.strip()
# Filter out lines with metadata patterns
if (
re.match(r"^(U\.S\.|United States|Sheet|Figure|References|Patent No|Date of Patent)", line)
or re.match(r"^\(?\d+\)?$", line) # Matches single numbers (page numbers)
or "Examiner" in line
or "Attorney" in line
or len(line) < 30 # Skip very short lines
):
continue
cleaned_lines.append(line)
return "\n".join(cleaned_lines)
def load_docs(document_path):
"""
Load and clean the PDF content, then split into chunks.
"""
try:
import fitz # PyMuPDF for text extraction
# Step 1: Extract plain text from PDF
doc = fitz.open(document_path)
extracted_text = []
for page_num, page in enumerate(doc):
page_text = page.get_text("text") # Extract text
clean_page_text = clean_extracted_text(page_text)
if clean_page_text: # Keep only non-empty cleaned text
extracted_text.append(clean_page_text)
doc.close()
# Combine all pages into one text
full_text = "\n".join(extracted_text)
st.write(f"Total Cleaned Text Length: {len(full_text)} characters")
# Step 2: Chunk the cleaned text
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
separators=["\n\n", "\n", " ", ""]
)
split_docs = text_splitter.create_documents([full_text])
st.write(f"Total Chunks After Splitting: {len(split_docs)}")
for i, doc in enumerate(split_docs[:3]): # Show first 3 chunks only
st.write(f"Chunk {i + 1}: {doc.page_content[:300]}...")
return split_docs
except Exception as e:
st.error(f"Failed to load and process PDF: {e}")
st.stop()
def initialize_vector_store(documents, persist_dir):
"""
Initialize the vector store with the provided documents.
"""
try:
# Initialize HuggingFace embeddings
embeddings = HuggingFaceEmbeddings()
# Create a Chroma vector store with the embeddings
vectordb = Chroma.from_documents(
documents=documents,
embedding=embeddings, # Pass embeddings directly
persist_directory=persist_dir
)
vectordb.persist() # Persist the vector store to disk
return vectordb
except Exception as e:
st.error(f"Failed to initialize the vector store: {e}")
st.stop()
def create_retriever(vectordb):
"""
Create a retriever from the vector store.
"""
return vectordb.as_retriever(search_kwargs={"k": 3})
def create_retrieval_chain(vectordb, api_key):
"""
Create a conversational retrieval chain with memory.
"""
retriever = create_retriever(vectordb)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
return ConversationalRetrievalChain.from_llm(
llm=OpenAI(temperature=0, openai_api_key=api_key),
retriever=retriever,
memory=memory
)
def setup_retrieval_pipeline(file_path, persist_dir, api_key):
"""
Load documents, create a vector store, and initialize a retrieval chain.
"""
st.write(f"Processing file: {file_path}")
# Step 1: Process and chunk documents
documents = load_docs(file_path)
if not documents:
st.error("Failed to process documents. Please check the input file.")
return None
# Step 2: Initialize vector store
vectordb = initialize_vector_store(documents, persist_dir)
# Step 3: Create retrieval chain
retrieval_chain = create_retrieval_chain(vectordb, api_key)
return retrieval_chain
def extract_patent_number(url):
pattern = r"/patent/([A-Z]{2}\d+)"
match = re.search(pattern, url)
return match.group(1) if match else None
def preview_pdf(pdf_path, scale_factor=0.5):
"""
Generate and display a resized preview of the first page of the PDF.
Args:
pdf_path (str): Path to the PDF file.
scale_factor (float): Factor to reduce the image size (default is 0.5).
Returns:
str: Path to the resized image preview.
"""
try:
# Open the PDF and extract the first page
doc = fitz.open(pdf_path)
first_page = doc[0]
# Apply scaling using a transformation matrix
matrix = fitz.Matrix(scale_factor, scale_factor) # Scale down the image
pix = first_page.get_pixmap(matrix=matrix) # Generate scaled image
# Save the preview image
temp_image_path = os.path.join(tempfile.gettempdir(), "pdf_preview.png")
pix.save(temp_image_path)
doc.close()
return temp_image_path
except Exception as e:
st.error(f"Error generating PDF preview: {e}")
return None
if __name__ == "__main__":
st.set_page_config(
page_title="Patent Chat: Google Patents Chat Demo",
page_icon="",
layout="wide",
initial_sidebar_state="expanded",
)
st.header(" Patent Chat: Google Patents Chat Demo")
# Input for Google Patent Link
patent_link = st.text_area(
"Enter Google Patent Link:",
value="https://patents.google.com/patent/US8676427B1/en",
height=90
)
# Initialize session state
for key in ["LOADED_PATENT", "pdf_preview", "loaded_pdf_path", "chain", "messages", "loading_complete"]:
if key not in st.session_state:
st.session_state[key] = None
# Button to load and process patent
if st.button("Load and Process Patent"):
if not patent_link:
st.warning("Please enter a valid Google patent link.")
st.stop()
# Extract patent number
patent_number = extract_patent_number(patent_link)
if not patent_number:
st.error("Invalid patent link format.")
st.stop()
st.write(f"Patent number: **{patent_number}**")
# File handling
pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
if not os.path.isfile(pdf_path):
with st.spinner(" Downloading patent file..."):
try:
pdf_path = download_pdf(patent_number)
st.write(f"\u2705 File downloaded: {pdf_path}")
except Exception as e:
st.error(f"Failed to download patent: {e}")
st.stop()
else:
st.write("\u2705 File already downloaded.")
# Generate PDF preview only if not already displayed
if not st.session_state.get("pdf_preview_displayed", False):
with st.spinner("Generating PDF preview..."):
preview_image_path = preview_pdf(pdf_path, scale_factor=0.5)
if preview_image_path:
st.session_state.pdf_preview = preview_image_path
st.image(preview_image_path, caption="First Page Preview", use_container_width=False)
st.session_state["pdf_preview_displayed"] = True
else:
st.warning("Failed to generate PDF preview.")
st.session_state.pdf_preview = None
# Load the document into the system
st.session_state["loading_complete"] = False
with st.spinner("Loading document into the system..."):
try:
st.session_state.chain = setup_retrieval_pipeline(
pdf_path, PERSISTED_DIRECTORY, OPENAI_API_KEY
)
st.session_state.LOADED_PATENT = patent_number
st.session_state.loaded_pdf_path = pdf_path
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
st.session_state["loading_complete"] = True
except Exception as e:
st.error(f"Failed to load the document: {e}")
st.session_state["loading_complete"] = False
st.stop()
if st.session_state["loading_complete"]:
st.success("Document successfully loaded! You can now start asking questions.")
# Display previous chat messages
if st.session_state.messages:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input for questions
if st.session_state.chain:
if user_input := st.chat_input("What is your question?"):
# User message
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
# Assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
with st.spinner("Generating response..."):
try:
# Generate response using the chain
assistant_response = st.session_state.chain({"question": user_input})
full_response = assistant_response.get("answer", "I'm sorry, I couldn't process that question.")
except Exception as e:
full_response = f"An error occurred: {e}"
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
else:
st.info("Press the 'Load and Process Patent' button to start processing.")
|