Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -381,7 +381,7 @@ def validate_analyst_output(analyst_output):
|
|
381 |
return analyst_output
|
382 |
|
383 |
|
384 |
-
# Visualization
|
385 |
def create_visualizations(analyst_output):
|
386 |
chart_paths = []
|
387 |
validated_data = validate_analyst_output(analyst_output)
|
@@ -392,7 +392,7 @@ def create_visualizations(analyst_output):
|
|
392 |
values = item["Values"]
|
393 |
|
394 |
try:
|
395 |
-
# Handle dictionary data for bar charts
|
396 |
if isinstance(values, dict):
|
397 |
df = pd.DataFrame(list(values.items()), columns=["Label", "Count"])
|
398 |
if len(df) <= 5:
|
@@ -402,21 +402,27 @@ def create_visualizations(analyst_output):
|
|
402 |
|
403 |
# Handle list data for bar/pie charts
|
404 |
elif isinstance(values, list):
|
405 |
-
#
|
406 |
if all(isinstance(v, dict) for v in values):
|
407 |
df = pd.DataFrame(values)
|
408 |
st.subheader(f"{category} (Detailed View)")
|
409 |
st.dataframe(df)
|
410 |
-
|
411 |
-
|
412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
else:
|
414 |
df = pd.DataFrame(values, columns=["Items"])
|
415 |
df = df["Items"].value_counts().reset_index()
|
416 |
df.columns = ["Label", "Count"]
|
417 |
chart = px.pie(df, names="Label", values="Count", title=f"{category} Distribution") if len(df) <= 5 else px.bar(df, x="Label", y="Count", title=f"{category} Frequency")
|
418 |
|
419 |
-
# Handle
|
420 |
elif isinstance(values, str):
|
421 |
st.subheader(f"{category} Insights")
|
422 |
st.table(pd.DataFrame({"Insights": [values]}))
|
@@ -427,10 +433,10 @@ def create_visualizations(analyst_output):
|
|
427 |
logging.warning(f"Unsupported data format in {category}: {values}")
|
428 |
continue
|
429 |
|
430 |
-
# Display
|
431 |
st.plotly_chart(chart)
|
432 |
|
433 |
-
# Save for PDF export
|
434 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_chart:
|
435 |
chart.write_image(temp_chart.name)
|
436 |
chart_paths.append(temp_chart.name)
|
@@ -441,6 +447,7 @@ def create_visualizations(analyst_output):
|
|
441 |
|
442 |
return chart_paths
|
443 |
|
|
|
444 |
def display_table(analyst_output):
|
445 |
table_data = []
|
446 |
validated_data = validate_analyst_output(analyst_output)
|
@@ -451,34 +458,35 @@ def display_table(analyst_output):
|
|
451 |
values = item["Values"]
|
452 |
|
453 |
try:
|
454 |
-
# Handle dictionary data
|
455 |
if isinstance(values, dict):
|
456 |
df = pd.DataFrame(list(values.items()), columns=["Label", "Count"])
|
457 |
st.subheader(f"{category} (Table View)")
|
458 |
st.dataframe(df)
|
459 |
table_data.extend(df.to_dict(orient="records"))
|
460 |
|
461 |
-
# Handle list data
|
462 |
elif isinstance(values, list):
|
463 |
-
# Handle complex lists (list of dictionaries)
|
464 |
if all(isinstance(v, dict) for v in values):
|
|
|
465 |
df = pd.DataFrame(values)
|
466 |
st.subheader(f"{category} (Detailed View)")
|
467 |
st.dataframe(df)
|
468 |
table_data.extend(df.to_dict(orient="records"))
|
469 |
-
# Handle simple lists
|
470 |
else:
|
|
|
471 |
df = pd.DataFrame(values, columns=["Items"])
|
472 |
st.subheader(f"{category} (List View)")
|
473 |
st.dataframe(df)
|
474 |
table_data.extend(df.to_dict(orient="records"))
|
475 |
|
476 |
-
# Handle
|
477 |
elif isinstance(values, str):
|
478 |
st.subheader(f"{category} (Summary)")
|
479 |
st.table(pd.DataFrame({"Insights": [values]}))
|
480 |
table_data.append({"Category": category, "Values": values})
|
481 |
|
|
|
482 |
else:
|
483 |
st.warning(f"Unsupported data format for {category}")
|
484 |
logging.warning(f"Unsupported data in {category}: {values}")
|
@@ -489,7 +497,6 @@ def display_table(analyst_output):
|
|
489 |
|
490 |
return table_data
|
491 |
|
492 |
-
|
493 |
def parse_analyst_output(raw_output):
|
494 |
key_insights = []
|
495 |
data_insights = []
|
|
|
381 |
return analyst_output
|
382 |
|
383 |
|
384 |
+
# Visualization
|
385 |
def create_visualizations(analyst_output):
|
386 |
chart_paths = []
|
387 |
validated_data = validate_analyst_output(analyst_output)
|
|
|
392 |
values = item["Values"]
|
393 |
|
394 |
try:
|
395 |
+
# Handle dictionary data for bar/pie charts
|
396 |
if isinstance(values, dict):
|
397 |
df = pd.DataFrame(list(values.items()), columns=["Label", "Count"])
|
398 |
if len(df) <= 5:
|
|
|
402 |
|
403 |
# Handle list data for bar/pie charts
|
404 |
elif isinstance(values, list):
|
405 |
+
# Handle list of dictionaries (e.g., Technology Spotlight)
|
406 |
if all(isinstance(v, dict) for v in values):
|
407 |
df = pd.DataFrame(values)
|
408 |
st.subheader(f"{category} (Detailed View)")
|
409 |
st.dataframe(df)
|
410 |
+
# Optional: Generate bar chart for complex data
|
411 |
+
for col in df.columns:
|
412 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
413 |
+
chart = px.bar(df, x=df.index, y=col, title=f"{category} - {col} Analysis")
|
414 |
+
st.plotly_chart(chart)
|
415 |
+
break
|
416 |
+
continue
|
417 |
+
|
418 |
+
# Handle simple lists
|
419 |
else:
|
420 |
df = pd.DataFrame(values, columns=["Items"])
|
421 |
df = df["Items"].value_counts().reset_index()
|
422 |
df.columns = ["Label", "Count"]
|
423 |
chart = px.pie(df, names="Label", values="Count", title=f"{category} Distribution") if len(df) <= 5 else px.bar(df, x="Label", y="Count", title=f"{category} Frequency")
|
424 |
|
425 |
+
# Handle text data
|
426 |
elif isinstance(values, str):
|
427 |
st.subheader(f"{category} Insights")
|
428 |
st.table(pd.DataFrame({"Insights": [values]}))
|
|
|
433 |
logging.warning(f"Unsupported data format in {category}: {values}")
|
434 |
continue
|
435 |
|
436 |
+
# Display the chart
|
437 |
st.plotly_chart(chart)
|
438 |
|
439 |
+
# Save the chart for PDF export
|
440 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_chart:
|
441 |
chart.write_image(temp_chart.name)
|
442 |
chart_paths.append(temp_chart.name)
|
|
|
447 |
|
448 |
return chart_paths
|
449 |
|
450 |
+
|
451 |
def display_table(analyst_output):
|
452 |
table_data = []
|
453 |
validated_data = validate_analyst_output(analyst_output)
|
|
|
458 |
values = item["Values"]
|
459 |
|
460 |
try:
|
461 |
+
# Handle dictionary data
|
462 |
if isinstance(values, dict):
|
463 |
df = pd.DataFrame(list(values.items()), columns=["Label", "Count"])
|
464 |
st.subheader(f"{category} (Table View)")
|
465 |
st.dataframe(df)
|
466 |
table_data.extend(df.to_dict(orient="records"))
|
467 |
|
468 |
+
# Handle list data
|
469 |
elif isinstance(values, list):
|
|
|
470 |
if all(isinstance(v, dict) for v in values):
|
471 |
+
# Detailed View for list of dictionaries
|
472 |
df = pd.DataFrame(values)
|
473 |
st.subheader(f"{category} (Detailed View)")
|
474 |
st.dataframe(df)
|
475 |
table_data.extend(df.to_dict(orient="records"))
|
|
|
476 |
else:
|
477 |
+
# Simple List View
|
478 |
df = pd.DataFrame(values, columns=["Items"])
|
479 |
st.subheader(f"{category} (List View)")
|
480 |
st.dataframe(df)
|
481 |
table_data.extend(df.to_dict(orient="records"))
|
482 |
|
483 |
+
# Handle string data
|
484 |
elif isinstance(values, str):
|
485 |
st.subheader(f"{category} (Summary)")
|
486 |
st.table(pd.DataFrame({"Insights": [values]}))
|
487 |
table_data.append({"Category": category, "Values": values})
|
488 |
|
489 |
+
# Handle unsupported data types
|
490 |
else:
|
491 |
st.warning(f"Unsupported data format for {category}")
|
492 |
logging.warning(f"Unsupported data in {category}: {values}")
|
|
|
497 |
|
498 |
return table_data
|
499 |
|
|
|
500 |
def parse_analyst_output(raw_output):
|
501 |
key_insights = []
|
502 |
data_insights = []
|