DrishtiSharma's picture
Update app.py
aeef33c verified
raw
history blame
21.2 kB
import streamlit as st
from crewai import Agent, Task, Crew
import os
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from fpdf import FPDF
import pandas as pd
import plotly.express as px
import tempfile
import time
import ast
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Title and Application Introduction
st.title("Patent Strategy and Innovation Consultant")
st.sidebar.write(
"This application provides actionable insights and comprehensive analysis for patent-related strategies."
)
# User Input Section
st.sidebar.header("User Inputs")
patent_area = st.text_input("Enter Patent Technology Area", value="Transparent Antennas for Windshields")
stakeholder = st.text_input("Enter Stakeholder", value="Patent Attorneys")
# Initialize LLM
llm = None
# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
#llm = ChatGroq(groq_api_key=os.getenv("GROQ_API_KEY"), model="groq/llama-3.3-70b-versatile")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
llm = None
else:
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
llm = None
else:
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
# Advanced Options
st.sidebar.header("Advanced Options")
enable_advanced_analysis = st.sidebar.checkbox("Enable Advanced Analysis", value=True)
enable_custom_visualization = st.sidebar.checkbox("Enable Custom Visualizations", value=True)
# Agent Customization
st.sidebar.header("Agent Customization")
with st.sidebar.expander("Customize Agent Goals", expanded=False):
enable_customization = st.checkbox("Enable Custom Goals")
if enable_customization:
planner_goal = st.text_area(
"Planner Goal",
value=(
"Conduct comprehensive research on trends in patent filings, technological innovation, and market dynamics within the {topic} sector. "
"Identify key players, emerging technologies, competitor strategies, and market gaps within the {topic} sector. "
"Provide actionable suggestions specifically tailored to the needs of {stakeholder}"
)
)
writer_goal = st.text_area(
"Writer Goal",
value=(
"Develop a high-impact, professionally structured insights report that seamlessly integrates comprehensive research data"
"and in-depth strategic analysis into a cohesive and compelling narrative. "
"Clearly organize findings into well-defined, data-driven sections—such as Market Trends, Competitive Landscape,"
"Emerging Technologies, Untapped Innovation Hotspots, and Strategic Opportunities—providing actionable insights and prioritized recommendations "
"specifically aligned with the strategic objectives and growth goals of {stakeholder}."
)
)
analyst_goal = st.text_area(
"Analyst Goal",
value=(
"Perform detailed statistical analysis of patent filings, growth trends, and innovation distribution within the {topic} sector, "
"specifically tailored to the needs of {stakeholder}. "
"Identify top regions, leading assignees/companies, and emerging technologies that are directly relevant to {topic} and actively driving innovation. Avoid unrelated recommendations. "
"Conduct an in-depth market gap analysis, highlighting at least 4-5 specific and actionable innovation opportunities within {topic}, "
"with a strong focus on sustainability, integration of emerging technologies, industry collaboration, and competitor positioning. "
"Evaluate competitor patent strategies and innovation pipelines to uncover untapped opportunities and areas for strategic advantage. "
"Ensure all emerging technologies and innovation hotspots are strictly aligned with {topic}, explicitly avoiding unrelated or generic recommendations. "
"Deliver highly actionable, data-driven insights to support strategic decision-making and long-term growth. "
"Provide structured output in a clear, organized list of dictionaries with 'Category' and 'Values' keys for effective data presentation."
)
)
else:
planner_goal = (
"Conduct comprehensive research on trends in patent filings, technological innovation, and market dynamics within the {topic} sector. "
"Identify key players, emerging technologies, competitor strategies, and market gaps within the {topic} sector. "
"Provide actionable suggestions specifically tailored to the needs of {stakeholder}"
)
writer_goal = (
"Develop a high-impact, professionally structured insights report that seamlessly integrates comprehensive research data"
"and in-depth strategic analysis into a cohesive and compelling narrative. "
"Clearly organize findings into well-defined, data-driven sections—such as Market Trends, Competitive Landscape,"
"Emerging Technologies, Untapped Innovation Hotspots, and Strategic Opportunities—providing actionable insights and prioritized recommendations "
"specifically aligned with the strategic objectives and growth goals of {stakeholder}."
)
analyst_goal = (
"Perform detailed statistical analysis of patent filings, growth trends, and innovation distribution within the {topic} sector, "
"specifically tailored to the needs of {stakeholder}. "
"Identify top regions, leading assignees/companies, and emerging technologies that are directly relevant to {topic} and actively driving innovation. Avoid unrelated recommendations. "
"Conduct an in-depth market gap analysis, highlighting at least 4-5 specific and actionable innovation opportunities within {topic}, "
"with a strong focus on sustainability, integration of emerging technologies, industry collaboration, and competitor positioning. "
"Evaluate competitor patent strategies and innovation pipelines to uncover untapped opportunities and areas for strategic advantage. "
"Ensure all emerging technologies and innovation hotspots are strictly aligned with {topic}, explicitly avoiding unrelated or generic recommendations. "
"Deliver highly actionable, data-driven insights to support strategic decision-making and long-term growth. "
"Provide structured output in a clear, organized list of dictionaries with 'Category' and 'Values' keys for effective data presentation."
)
# Agent Definitions
planner = Agent(
role="Patent Research Consultant",
goal=planner_goal,
backstory=(
"You're tasked with researching {topic} patents and identifying key trends and players. Your work supports the Patent Writer and Data Analyst."
),
allow_delegation=False,
verbose=True,
llm=llm
)
writer = Agent(
role="Patent Insights Writer",
goal=writer_goal,
backstory=(
"Using the research from the Planner and data from the Analyst, craft a professional document summarizing patent insights for {stakeholder}."
),
allow_delegation=False,
verbose=True,
llm=llm
)
analyst = Agent(
role="Patent Data Analyst",
goal=analyst_goal,
backstory=(
"Analyze patent filing data and innovation trends in {topic} to provide statistical insights. Your analysis will guide the Writer's final report."
),
allow_delegation=False,
verbose=True,
llm=llm
)
# Task Definitions
plan = Task(
description=(
"1. Research recent trends in {topic} patent filings and innovation.\n"
"2. Identify key players and emerging technologies.\n"
"3. Provide recommendations for stakeholders on strategic directions.\n"
"4. Identify key statistics such as top regions, top players, and hot areas of innovation.\n"
"5. Limit the output to 600 words."
),
expected_output="A research document with structured insights, strategic recommendations, and key statistics.",
agent=planner
)
write = Task(
description=(
"1. Use the Planner's and Analyst's outputs to craft a professional patent insights document.\n"
"2. Include key findings, visual aids, and actionable strategies.\n"
"3. Suggest strategic directions and highlight untapped innovation areas.\n"
"4. Incorporate summarized tables for key statistics and example inventions without assigning/including any fake patent numbers.\n"
"5. Limit the document to 600 words."
),
expected_output="A polished, stakeholder-ready patent insights document with actionable recommendations.",
agent=writer
)
analyse = Task(
description=(
"1. Conduct a comprehensive statistical analysis of patent filing trends, innovation hot spots, and future growth projections in the transparent antenna industry.\n"
"2. Identify and rank the top regions, leading assignees/companies driving innovation.\n"
"3. Highlight regional innovation trends and the distribution of emerging technologies across different geographies.\n"
"4. Provide actionable insights and strategic recommendations based on the data.\n"
"5. Deliver structured output in a list of dictionaries with 'Category' and 'Values' fields:\n"
" - 'Values' can be:\n"
" a) A dictionary with counts for quantitative data (e.g., {{'Region A': 120, 'Region B': 95}}),\n"
" b) A list of key items (technologies, companies, inventors), or\n"
" c) Descriptive text for qualitative insights.\n"
"6. Example Output Format:\n"
"[\n"
" {{'Category': 'Top Regions', 'Values': {{'North America': 120, 'Europe': 95, 'Asia-Pacific': 85}}}},\n"
" {{'Category': 'Top Assignees', 'Values': {{'Company A': 40, 'Company B': 35}}}},\n"
" {{'Category': 'Emerging Technologies', 'Values': ['Graphene Antennas', '5G Integration']}},\n"
" {{'Category': 'Strategic Insights', 'Values': 'Collaborations between automotive and material science industries are accelerating innovation.'}}\n"
"]\n"
"7. Ensure that the output is clean, well-structured, and formatted for use in visualizations and tables."
),
expected_output="A structured, well-organized dataset with numeric, list-based, and descriptive insights for comprehensive visual and tabular reporting.",
agent=analyst
)
crew = Crew(
agents=[planner, analyst, writer],
tasks=[plan, analyse, write],
verbose=True
)
# PDF Report Generation
def generate_pdf_report(result, charts=None, table_data=None, metadata=None):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.set_auto_page_break(auto=True, margin=15)
pdf.set_font("Arial", size=16, style="B")
pdf.cell(200, 10, txt="Patent Strategy and Innovation Report", ln=True, align="C")
pdf.ln(10)
if metadata:
pdf.set_font("Arial", size=10)
for key, value in metadata.items():
pdf.cell(200, 10, txt=f"{key}: {value}", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, txt=result)
if charts:
for chart_path in charts:
try:
pdf.add_page()
pdf.image(chart_path, x=10, y=20, w=180)
logging.info(f"Successfully included chart: {chart_path}")
except Exception as e:
logging.error(f"Failed to include chart in PDF: {chart_path}. Error: {e}")
if table_data:
pdf.add_page()
pdf.set_font("Arial", size=10)
pdf.cell(200, 10, txt="Consolidated Table:", ln=True, align="L")
for row in table_data:
pdf.cell(200, 10, txt=str(row), ln=True)
pdf.output(temp_pdf.name)
return temp_pdf.name
# Data Validation
def validate_analyst_output(analyst_output):
if not analyst_output:
st.warning("No data available for analysis.")
return None
if not isinstance(analyst_output, list) or not all(isinstance(item, dict) for item in analyst_output):
st.warning("Analyst output must be a list of dictionaries.")
return None
required_keys = {'Category', 'Values'}
if not all(required_keys.issubset(item.keys()) for item in analyst_output):
st.warning(f"Each dictionary must contain keys: {required_keys}")
return None
return analyst_output
# Visualization and Table Display
def create_visualizations(analyst_output):
chart_paths = []
validated_data = validate_analyst_output(analyst_output)
if validated_data:
for item in validated_data:
category = item["Category"]
values = item["Values"]
try:
# Handle dictionary data
if isinstance(values, dict):
df = pd.DataFrame(list(values.items()), columns=["Label", "Count"])
# Choose Pie Chart for fewer categories, else Bar Chart
if len(df) <= 5:
chart = px.pie(df, names="Label", values="Count", title=f"{category} Distribution")
else:
chart = px.bar(df, x="Label", y="Count", title=f"{category} Analysis")
# Handle list data
elif isinstance(values, list):
# Convert the list into a frequency count without dummy values
df = pd.DataFrame(values, columns=["Label"])
df = df["Label"].value_counts().reset_index()
df.columns = ["Label", "Count"]
# Plot as a bar chart or pie chart
if len(df) <= 5:
chart = px.pie(df, names="Label", values="Count", title=f"{category} Distribution")
else:
chart = px.bar(df, x="Label", y="Count", title=f"{category} Frequency")
# Handle text data
elif isinstance(values, str):
st.subheader(f"{category} Insights")
st.table(pd.DataFrame({"Insights": [values]}))
continue # No chart for text data
else:
st.warning(f"Unsupported data format for category: {category}")
continue
# Display the chart in Streamlit
st.plotly_chart(chart)
# Save the chart for PDF export
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_chart:
chart.write_image(temp_chart.name)
chart_paths.append(temp_chart.name)
except Exception as e:
st.error(f"Failed to generate visualization for {category}: {e}")
logging.error(f"Error in {category} visualization: {e}")
return chart_paths
def display_table(analyst_output):
table_data = []
validated_data = validate_analyst_output(analyst_output)
if validated_data:
for item in validated_data:
category = item["Category"]
values = item["Values"]
# Error handling to prevent crashes
try:
# Handle dictionary data (Table View)
if isinstance(values, dict):
df = pd.DataFrame(list(values.items()), columns=["Label", "Count"])
st.subheader(f"{category} (Table View)")
st.dataframe(df)
table_data.extend(df.to_dict(orient="records"))
# Handle list data (List View)
elif isinstance(values, list):
df = pd.DataFrame(values, columns=["Items"])
st.subheader(f"{category} (List View)")
st.dataframe(df)
table_data.extend(df.to_dict(orient="records"))
# Handle text data (Summary View)
elif isinstance(values, str):
st.subheader(f"{category} (Summary)")
st.table(pd.DataFrame({"Insights": [values]}))
table_data.append({"Category": category, "Values": values})
else:
st.warning(f"Unsupported data format for category: {category}")
except Exception as e:
logging.error(f"Error processing {category}: {e}")
st.error(f"Failed to display {category} as a table due to an error.")
return table_data
def parse_analyst_output(raw_output):
structured_data = []
current_category = None
current_values = []
# Split raw output by line
lines = raw_output.split('\n')
for line in lines:
line = line.strip()
# Detect the start of a new category
if line.startswith("Category:"):
# Save the previous category and its values
if current_category and current_values:
structured_data.append({
"Category": current_category,
"Values": current_values if len(current_values) > 1 else current_values[0]
})
# Start processing the new category
current_category = line.replace("Category:", "").strip()
current_values = []
# Skip 'Values:' header
elif line.startswith("Values:"):
continue
# Process the values under the current category
elif line and current_category:
try:
# Attempt to convert the line into Python data (dict/list)
parsed_value = ast.literal_eval(line)
current_values.append(parsed_value)
except (ValueError, SyntaxError):
# If parsing fails, treat it as plain text
current_values.append(line)
# Save the last processed category
if current_category and current_values:
structured_data.append({
"Category": current_category,
"Values": current_values if len(current_values) > 1 else current_values[0]
})
return structured_data
# Main Execution Block
if st.button("Generate Patent Insights"):
with st.spinner('Processing...'):
try:
start_time = time.time()
results = crew.kickoff(inputs={"topic": patent_area, "stakeholder": stakeholder})
elapsed_time = time.time() - start_time
writer_output = getattr(results.tasks_output[2], "raw", "No details available.")
if writer_output:
st.markdown("### Final Report")
st.write(writer_output)
else:
st.warning("No final report available.")
with st.expander("Explore Detailed Insights"):
tab1, tab2 = st.tabs(["Planner's Insights", "Analyst's Analysis"])
with tab1:
planner_output = getattr(results.tasks_output[0], "raw", "No details available.")
st.write(planner_output)
with tab2:
analyst_output = getattr(results.tasks_output[1], "raw", "No details available.")
st.write(analyst_output)
# Convert raw text to structured data
if isinstance(analyst_output, str):
analyst_output = parse_analyst_output(analyst_output)
st.subheader("Structured Analyst Output")
st.write(analyst_output)
charts = []
if enable_advanced_analysis:
charts = create_visualizations(analyst_output)
table_data = display_table(analyst_output)
st.success(f"Analysis completed in {elapsed_time:.2f} seconds.")
pdf_path = generate_pdf_report(writer_output, charts=charts, table_data=table_data, metadata={"Technology Area": patent_area, "Stakeholder": stakeholder})
with open(pdf_path, "rb") as report_file:
st.download_button("Download Report", data=report_file, file_name="Patent_Strategy_Report.pdf")
except Exception as e:
logging.error(f"An error occurred during execution: {e}")
st.error(f"An error occurred during execution: {e}")