Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -110,6 +110,25 @@ if st.session_state.df is not None and st.session_state.show_preview:
|
|
110 |
# st.error("β οΈ GPT-4o failed to generate a valid suggestion.")
|
111 |
# return None
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
114 |
import json
|
115 |
|
@@ -117,14 +136,15 @@ def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
|
117 |
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
118 |
categorical_columns = df.select_dtypes(exclude='number').columns.tolist()
|
119 |
|
120 |
-
# Enhanced Prompt with
|
121 |
prompt = f"""
|
122 |
Analyze the following query and suggest the most suitable visualization(s) using the dataset.
|
123 |
|
124 |
**Query:** "{query}"
|
125 |
|
126 |
-
**
|
127 |
-
**
|
|
|
128 |
|
129 |
Suggest visualizations in this exact JSON format:
|
130 |
[
|
@@ -138,28 +158,85 @@ def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
|
138 |
}}
|
139 |
]
|
140 |
|
141 |
-
**Examples:**
|
142 |
-
|
|
|
|
|
143 |
{{
|
144 |
"chart_type": "box",
|
145 |
"x_axis": "job_title",
|
146 |
"y_axis": "salary_in_usd",
|
147 |
"group_by": "experience_level",
|
148 |
"title": "Salary Distribution by Job Title and Experience",
|
149 |
-
"description": "A box plot
|
150 |
}}
|
151 |
|
152 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
{{
|
154 |
"chart_type": "line",
|
155 |
"x_axis": "year",
|
156 |
"y_axis": "revenue",
|
157 |
"group_by": null,
|
158 |
-
"title": "Revenue Growth
|
159 |
-
"description": "A line chart showing
|
160 |
}}
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
"""
|
164 |
|
165 |
for attempt in range(retries + 1):
|
@@ -170,11 +247,9 @@ def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
|
170 |
# Load JSON response
|
171 |
suggestions = json.loads(response)
|
172 |
|
173 |
-
# Validate response structure
|
174 |
if isinstance(suggestions, list):
|
175 |
-
valid_suggestions = [
|
176 |
-
s for s in suggestions if all(k in s for k in ["chart_type", "x_axis", "y_axis"])
|
177 |
-
]
|
178 |
if valid_suggestions:
|
179 |
return valid_suggestions
|
180 |
else:
|
@@ -182,18 +257,17 @@ def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
|
182 |
return None
|
183 |
|
184 |
elif isinstance(suggestions, dict):
|
185 |
-
if
|
186 |
return [suggestions]
|
187 |
else:
|
188 |
-
st.warning("β οΈ GPT-4o's suggestion is incomplete.")
|
189 |
return None
|
190 |
|
191 |
except json.JSONDecodeError:
|
192 |
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.")
|
193 |
except Exception as e:
|
194 |
st.error(f"β οΈ Error during GPT-4o call: {e}")
|
195 |
-
|
196 |
-
# Retry if necessary
|
197 |
if attempt < retries:
|
198 |
st.info("π Retrying visualization suggestion...")
|
199 |
|
@@ -201,7 +275,6 @@ def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
|
201 |
return None
|
202 |
|
203 |
|
204 |
-
|
205 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
206 |
"""
|
207 |
Add relevant statistical annotations to the visualization
|
|
|
110 |
# st.error("β οΈ GPT-4o failed to generate a valid suggestion.")
|
111 |
# return None
|
112 |
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
# Helper Function for Validation
|
117 |
+
def is_valid_suggestion(suggestion):
|
118 |
+
chart_type = suggestion.get("chart_type", "").lower()
|
119 |
+
|
120 |
+
if chart_type in ["bar", "line", "box", "scatter"]:
|
121 |
+
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])
|
122 |
+
|
123 |
+
elif chart_type == "pie":
|
124 |
+
return all(k in suggestion for k in ["chart_type", "x_axis"])
|
125 |
+
|
126 |
+
elif chart_type == "heatmap":
|
127 |
+
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"])
|
128 |
+
|
129 |
+
else:
|
130 |
+
return False
|
131 |
+
|
132 |
def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
133 |
import json
|
134 |
|
|
|
136 |
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
137 |
categorical_columns = df.select_dtypes(exclude='number').columns.tolist()
|
138 |
|
139 |
+
# Enhanced Prompt with Diverse, Query-Based Examples
|
140 |
prompt = f"""
|
141 |
Analyze the following query and suggest the most suitable visualization(s) using the dataset.
|
142 |
|
143 |
**Query:** "{query}"
|
144 |
|
145 |
+
**Dataset Overview:**
|
146 |
+
- **Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'}
|
147 |
+
- **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'}
|
148 |
|
149 |
Suggest visualizations in this exact JSON format:
|
150 |
[
|
|
|
158 |
}}
|
159 |
]
|
160 |
|
161 |
+
**Query-Based Examples:**
|
162 |
+
|
163 |
+
- **Query:** "What is the salary distribution across different job titles?"
|
164 |
+
**Suggested Visualization:**
|
165 |
{{
|
166 |
"chart_type": "box",
|
167 |
"x_axis": "job_title",
|
168 |
"y_axis": "salary_in_usd",
|
169 |
"group_by": "experience_level",
|
170 |
"title": "Salary Distribution by Job Title and Experience",
|
171 |
+
"description": "A box plot to show how salaries vary across different job titles and experience levels."
|
172 |
}}
|
173 |
|
174 |
+
- **Query:** "Show the average salary by company size and industry."
|
175 |
+
**Suggested Visualizations:**
|
176 |
+
[
|
177 |
+
{{
|
178 |
+
"chart_type": "bar",
|
179 |
+
"x_axis": "company_size",
|
180 |
+
"y_axis": "salary_in_usd",
|
181 |
+
"group_by": "industry",
|
182 |
+
"title": "Average Salary by Company Size and Industry",
|
183 |
+
"description": "A grouped bar chart comparing average salaries across company sizes and industries."
|
184 |
+
}},
|
185 |
+
{{
|
186 |
+
"chart_type": "heatmap",
|
187 |
+
"x_axis": "industry",
|
188 |
+
"y_axis": "company_size",
|
189 |
+
"group_by": null,
|
190 |
+
"title": "Salary Heatmap by Industry and Company Size",
|
191 |
+
"description": "A heatmap showing salary concentration across industries and company sizes."
|
192 |
+
}}
|
193 |
+
]
|
194 |
+
|
195 |
+
- **Query:** "How has the company's revenue changed over the years?"
|
196 |
+
**Suggested Visualization:**
|
197 |
{{
|
198 |
"chart_type": "line",
|
199 |
"x_axis": "year",
|
200 |
"y_axis": "revenue",
|
201 |
"group_by": null,
|
202 |
+
"title": "Yearly Revenue Growth",
|
203 |
+
"description": "A line chart showing revenue growth over time."
|
204 |
}}
|
205 |
|
206 |
+
- **Query:** "What is the market share of each product category?"
|
207 |
+
**Suggested Visualization:**
|
208 |
+
{{
|
209 |
+
"chart_type": "pie",
|
210 |
+
"x_axis": "product_category",
|
211 |
+
"y_axis": null,
|
212 |
+
"group_by": null,
|
213 |
+
"title": "Market Share by Product Category",
|
214 |
+
"description": "A pie chart to show the market share distribution across different product categories."
|
215 |
+
}}
|
216 |
+
|
217 |
+
- **Query:** "Is there a correlation between years of experience and salary?"
|
218 |
+
**Suggested Visualization:**
|
219 |
+
{{
|
220 |
+
"chart_type": "scatter",
|
221 |
+
"x_axis": "years_of_experience",
|
222 |
+
"y_axis": "salary_in_usd",
|
223 |
+
"group_by": "job_title",
|
224 |
+
"title": "Experience vs Salary by Job Title",
|
225 |
+
"description": "A scatter plot to analyze the relationship between experience and salary across different job titles."
|
226 |
+
}}
|
227 |
+
|
228 |
+
- **Query:** "Which departments have the highest concentration of employees across regions?"
|
229 |
+
**Suggested Visualization:**
|
230 |
+
{{
|
231 |
+
"chart_type": "heatmap",
|
232 |
+
"x_axis": "department",
|
233 |
+
"y_axis": "region",
|
234 |
+
"group_by": null,
|
235 |
+
"title": "Employee Distribution by Department and Region",
|
236 |
+
"description": "A heatmap to visualize employee density across departments and regions."
|
237 |
+
}}
|
238 |
+
|
239 |
+
Only suggest visualizations that logically match the query and dataset.
|
240 |
"""
|
241 |
|
242 |
for attempt in range(retries + 1):
|
|
|
247 |
# Load JSON response
|
248 |
suggestions = json.loads(response)
|
249 |
|
250 |
+
# Validate response structure using the helper function
|
251 |
if isinstance(suggestions, list):
|
252 |
+
valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)]
|
|
|
|
|
253 |
if valid_suggestions:
|
254 |
return valid_suggestions
|
255 |
else:
|
|
|
257 |
return None
|
258 |
|
259 |
elif isinstance(suggestions, dict):
|
260 |
+
if is_valid_suggestion(suggestions):
|
261 |
return [suggestions]
|
262 |
else:
|
263 |
+
st.warning("β οΈ GPT-4o's suggestion is incomplete or invalid.")
|
264 |
return None
|
265 |
|
266 |
except json.JSONDecodeError:
|
267 |
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.")
|
268 |
except Exception as e:
|
269 |
st.error(f"β οΈ Error during GPT-4o call: {e}")
|
270 |
+
|
|
|
271 |
if attempt < retries:
|
272 |
st.info("π Retrying visualization suggestion...")
|
273 |
|
|
|
275 |
return None
|
276 |
|
277 |
|
|
|
278 |
def add_stats_to_figure(fig, df, y_axis, chart_type):
|
279 |
"""
|
280 |
Add relevant statistical annotations to the visualization
|