Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import tqdm | |
from transformers import LlamaModel, LlamaConfig | |
from midi_tokenizer import MIDITokenizer | |
class MIDIModel(nn.Module): | |
def __init__(self, tokenizer: MIDITokenizer, n_layer=12, n_head=16, n_embd=1024, n_inner=4096, flash=False, | |
*args, **kwargs): | |
super(MIDIModel, self).__init__() | |
self.tokenizer = tokenizer | |
self.net = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size, | |
hidden_size=n_embd, num_attention_heads=n_head, | |
num_hidden_layers=n_layer, intermediate_size=n_inner, | |
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096)) | |
self.net_token = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size, | |
hidden_size=n_embd, num_attention_heads=n_head // 4, | |
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4, | |
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096)) | |
if flash: | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
self.lm_head = nn.Linear(n_embd, tokenizer.vocab_size, bias=False) | |
self.device = "cpu" | |
def to(self, *args, **kwargs): | |
if "device" in kwargs: | |
self.device = kwargs["device"] | |
return super(MIDIModel, self).to(*args, **kwargs) | |
def forward_token(self, hidden_state, x=None): | |
""" | |
:param hidden_state: (batch_size, n_embd) | |
:param x: (batch_size, token_sequence_length) | |
:return: (batch_size, 1 + token_sequence_length, vocab_size) | |
""" | |
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd) | |
if x is not None: | |
x = self.net_token.embed_tokens(x) | |
hidden_state = torch.cat([hidden_state, x], dim=1) | |
hidden_state = self.net_token.forward(inputs_embeds=hidden_state).last_hidden_state | |
return self.lm_head(hidden_state) | |
def forward(self, x): | |
""" | |
:param x: (batch_size, midi_sequence_length, token_sequence_length) | |
:return: hidden (batch_size, midi_sequence_length, n_embd) | |
""" | |
# merge token sequence | |
x = self.net.embed_tokens(x) | |
x = x.sum(dim=-2) | |
x = self.net.forward(inputs_embeds=x) | |
return x.last_hidden_state | |
def sample_top_p_k(self, probs, p, k, generator=None): | |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) | |
probs_sum = torch.cumsum(probs_sort, dim=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort[mask] = 0.0 | |
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device) | |
mask[:k] = 1 | |
probs_sort = probs_sort * mask | |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) | |
shape = probs_sort.shape | |
next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]), | |
num_samples=1, generator=generator).reshape(*shape[:-1], 1) | |
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1]) | |
return next_token | |
def generate(self, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, amp=True, generator=None): | |
tokenizer = self.tokenizer | |
max_token_seq = tokenizer.max_token_seq | |
if prompt is None: | |
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device) | |
input_tensor[0, 0] = tokenizer.bos_id # bos | |
else: | |
prompt = prompt[:, :max_token_seq] | |
if prompt.shape[-1] < max_token_seq: | |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device) | |
input_tensor = input_tensor.unsqueeze(0) | |
cur_len = input_tensor.shape[1] | |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len) | |
with bar, torch.cuda.amp.autocast(enabled=amp): | |
while cur_len < max_len: | |
end = False | |
hidden = self.forward(input_tensor)[0, -1].unsqueeze(0) | |
next_token_seq = None | |
event_name = "" | |
for i in range(max_token_seq): | |
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=self.device) | |
if i == 0: | |
mask[list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1 | |
else: | |
param_name = tokenizer.events[event_name][i - 1] | |
mask[tokenizer.parameter_ids[param_name]] = 1 | |
logits = self.forward_token(hidden, next_token_seq)[:, -1:] | |
scores = torch.softmax(logits / temp, dim=-1) * mask | |
sample = self.sample_top_p_k(scores, top_p, top_k, generator=generator) | |
if i == 0: | |
next_token_seq = sample | |
eid = sample.item() | |
if eid == tokenizer.eos_id: | |
end = True | |
break | |
event_name = tokenizer.id_events[eid] | |
else: | |
next_token_seq = torch.cat([next_token_seq, sample], dim=1) | |
if len(tokenizer.events[event_name]) == i: | |
break | |
if next_token_seq.shape[1] < max_token_seq: | |
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]), | |
"constant", value=tokenizer.pad_id) | |
next_token_seq = next_token_seq.unsqueeze(1) | |
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1) | |
cur_len += 1 | |
bar.update(1) | |
if end: | |
break | |
return input_tensor[0].cpu().numpy() |