File size: 5,091 Bytes
dabad06 c9d8086 dabad06 efba111 dabad06 f2fdace dabad06 90b7141 ce31562 dabad06 87458e6 dabad06 87458e6 dabad06 87458e6 dabad06 87458e6 3feaece 301d19a 3feaece 87458e6 3feaece dabad06 47f1219 dabad06 87458e6 dabad06 87458e6 f2fdace 87458e6 dabad06 87458e6 dabad06 87458e6 dabad06 87458e6 dabad06 87458e6 dabad06 47f1219 dabad06 47f1219 dabad06 87458e6 dabad06 ce31562 dabad06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import pickle
import os
import praw
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import nltk
from nltk.stem.porter import PorterStemmer
from nltk.corpus import stopwords
import spacy
import string
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import re
def save_data(data, filename):
with open(filename, 'wb') as file:
pickle.dump(data, file)
def load_data(filename):
if os.path.exists(filename):
with open(filename, 'rb') as file:
return pickle.load(file)
else:
return None
# PRAW configs
REDDIT_CLIENT_ID = os.environ['client_id']
REDDIT_CLIENT_SECRET = os.environ['secret_key']
REDDIT_USERNAME = os.environ['username']
reddit = praw.Reddit(
client_id=REDDIT_CLIENT_ID,
client_secret=REDDIT_CLIENT_SECRET,
user_agent=f"script:sentiment-analysis:v0.0.1 (by {REDDIT_USERNAME})"
)
# NLP configs
stemmer = PorterStemmer()
nlp = spacy.load("en_core_web_sm")
nltk.download('punkt')
nltk.download('stopwords')
# Model configs
tokenizer = RobertaTokenizer.from_pretrained('aychang/roberta-base-imdb')
model = RobertaForSequenceClassification.from_pretrained(
'aychang/roberta-base-imdb', num_labels=2)
model.classifier = torch.nn.Linear(768, 2)
def get_sentiment(query):
filename = f"data/sentiment_analysis/{query}_results.pkl"
saved_data = load_data(filename)
if saved_data:
positive, negative, _ = saved_data
wordcloud = f'static/images/wordcloud/{query}_cloud.png'
return positive, negative, wordcloud
else:
results = get_reddit_results(query)
if not results:
error = "No results found for query"
return error
positive, negative, wordcloud = analyze_comments(
results, query=query)
print(f'positive:{positive}')
save_data((positive, negative, wordcloud), filename)
return positive, negative, f'static/images/wordcloud/{query}_cloud.png'
def get_reddit_results(query):
try:
sub = reddit.subreddit('noveltranslations+progressionfantasy')
results = sub.search(query, limit=1)
results_list = list(results)
if results_list:
return results_list
else:
print("No results found for query.")
return []
except Exception as e:
print(f"Error occurred: {e}")
return []
def transform_text(text):
url_pattern = re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+')
text = url_pattern.sub('', text)
text = text.lower()
text = nltk.word_tokenize(text)
text = [i for i in text if i.isalnum()]
stopwords_set = set(stopwords.words('english'))
text = [i for i in text if i not in stopwords_set and i not in string.punctuation]
text = [stemmer.stem(i) for i in text]
return ' '.join(text)
def tokenize(text):
doc = nlp(text)
return [token.text for token in doc]
def analyze_comments(results, query):
total_positive = 0
total_negative = 0
total_comments = 0
comments_for_cloud = []
for submission in results:
submission.comments.replace_more(limit=None)
all_comments = submission.comments.list()
for comment in all_comments:
comment_body = comment.body
text = transform_text(comment_body)
comments_for_cloud.append(comment_body)
if text:
tokens = tokenize(text)
tokenized_input = tokenizer(
tokens, return_tensors='pt', truncation=True, padding=True)
outputs = model(**tokenized_input)
probabilities = torch.softmax(outputs.logits, dim=-1)
mean_probabilities = probabilities.mean(dim=1)
positive_pct = mean_probabilities[0][1].item() * 100
negative_pct = mean_probabilities[0][0].item() * 100
total_positive += positive_pct
total_negative += negative_pct
total_comments += 1
if total_comments > 0:
avg_positive = total_positive / total_comments
avg_negative = total_negative / total_comments
else:
avg_positive = 0
avg_negative = 0
if total_comments > 0:
all_comments_string = ' '.join(comments_for_cloud)
wordcloud = WordCloud(width=400, height=400,
background_color='white',
max_words=30,
stopwords=stopwords.words('english'),
min_font_size=10).generate(all_comments_string)
# Save the WordCloud image as a static file
wordcloud.to_file(
f'static/images/wordcloud/{query}_cloud.png')
else:
wordcloud = None
print(f'positive:{avg_positive}')
return round(avg_positive), round(avg_negative), wordcloud
|