Spaces:
Runtime error
Runtime error
File size: 9,442 Bytes
a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Copyright (c) SenseTime Research. All rights reserved.
import os
import argparse
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from utils.ImagesDataset import ImagesDataset
import cv2
import time
import copy
import imutils
# for openpose body keypoint detector : # (src:https://github.com/Hzzone/pytorch-openpose)
from openpose.src import util
from openpose.src.body import Body
# for paddlepaddle human segmentation : #(src: https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.5/contrib/PP-HumanSeg/)
from PP_HumanSeg.deploy.infer import Predictor as PP_HumenSeg_Predictor
import math
def angle_between_points(p0, p1, p2):
if p0[1] == -1 or p1[1] == -1 or p2[1] == -1:
return -1
a = (p1[0]-p0[0])**2 + (p1[1]-p0[1])**2
b = (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2
c = (p2[0]-p0[0])**2 + (p2[1]-p0[1])**2
if a * b == 0:
return -1
return math.acos((a+b-c) / math.sqrt(4*a*b)) * 180 / math.pi
def crop_img_with_padding(img, keypoints, rect):
person_xmin, person_xmax, ymin, ymax = rect
img_h, img_w, _ = img.shape # find body center using keypoints
middle_shoulder_x = keypoints[1][0]
middle_hip_x = (keypoints[8][0] + keypoints[11][0]) // 2
mid_x = (middle_hip_x + middle_shoulder_x) // 2
mid_y = (ymin + ymax) // 2
# find which side (l or r) is further than center x, use the further side
if abs(mid_x-person_xmin) > abs(person_xmax-mid_x): # left further
xmin = person_xmin
xmax = mid_x + (mid_x-person_xmin)
else:
# may be negtive
# in this case, the script won't output any image, leave the case like this
# since we don't want to pad human body
xmin = mid_x - (person_xmax-mid_x)
xmax = person_xmax
w = xmax - xmin
h = ymax - ymin
# pad rectangle to w:h = 1:2 ## calculate desired border length
if h / w >= 2: # pad horizontally
target_w = h // 2
xmin_prime = int(mid_x - target_w / 2)
xmax_prime = int(mid_x + target_w / 2)
if xmin_prime < 0:
pad_left = abs(xmin_prime) # - xmin
xmin = 0
else:
pad_left = 0
xmin = xmin_prime
if xmax_prime > img_w:
pad_right = xmax_prime - img_w
xmax = img_w
else:
pad_right = 0
xmax = xmax_prime
cropped_img = img[int(ymin):int(ymax), int(xmin):int(xmax)]
im_pad = cv2.copyMakeBorder(cropped_img, 0, 0, int(
pad_left), int(pad_right), cv2.BORDER_REPLICATE)
else: # pad vertically
target_h = w * 2
ymin_prime = mid_y - (target_h / 2)
ymax_prime = mid_y + (target_h / 2)
if ymin_prime < 0:
pad_up = abs(ymin_prime) # - ymin
ymin = 0
else:
pad_up = 0
ymin = ymin_prime
if ymax_prime > img_h:
pad_down = ymax_prime - img_h
ymax = img_h
else:
pad_down = 0
ymax = ymax_prime
print(ymin, ymax, xmin, xmax, img.shape)
cropped_img = img[int(ymin):int(ymax), int(xmin):int(xmax)]
im_pad = cv2.copyMakeBorder(cropped_img, int(pad_up), int(pad_down), 0,
0, cv2.BORDER_REPLICATE)
result = cv2.resize(im_pad, (512, 1024), interpolation=cv2.INTER_AREA)
return result
def run(args):
os.makedirs(args.output_folder, exist_ok=True)
dataset = ImagesDataset(
args.image_folder, transforms.Compose([transforms.ToTensor()]))
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
body_estimation = Body('openpose/model/body_pose_model.pth')
total = len(dataloader)
print('Num of dataloader : ', total)
os.makedirs(f'{args.output_folder}', exist_ok=True)
# os.makedirs(f'{args.output_folder}/middle_result', exist_ok=True)
# initialzide HumenSeg
human_seg_args = {}
human_seg_args['cfg'] = 'PP_HumanSeg/export_model/deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax/deploy.yaml'
human_seg_args['input_shape'] = [1024, 512]
human_seg_args['save_dir'] = args.output_folder
human_seg_args['soft_predict'] = False
human_seg_args['use_gpu'] = True
human_seg_args['test_speed'] = False
human_seg_args['use_optic_flow'] = False
human_seg_args['add_argmax'] = True
human_seg_args = argparse.Namespace(**human_seg_args)
human_seg = PP_HumenSeg_Predictor(human_seg_args)
from tqdm import tqdm
for fname, image in tqdm(dataloader):
# try:
# tensor to numpy image
fname = fname[0]
print(f'Processing \'{fname}\'.')
image = (image.permute(0, 2, 3, 1) * 255).clamp(0, 255)
image = image.squeeze(0).numpy() # --> tensor to numpy, (H,W,C)
# avoid super high res img
if image.shape[0] >= 2000: # height ### for shein image
ratio = image.shape[0]/1200 # height
dim = (int(image.shape[1]/ratio), 1200) # (width, height)
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# create segmentation
# mybg = cv2.imread('mybg.png')
comb, segmentation, bg, ori_img = human_seg.run(image, None) # mybg)
# cv2.imwrite('comb.png',comb) # [0,255]
# cv2.imwrite('alpha.png',segmentation*255) # segmentation [0,1] --> [0.255]
# cv2.imwrite('bg.png',bg) #[0,255]
# cv2.imwrite('ori_img.png',ori_img) # [0,255]
masks_np = (segmentation * 255) # .byte().cpu().numpy() #1024,512,1
mask0_np = masks_np[:, :, 0].astype(np.uint8) # [0, :, :]
contours = cv2.findContours(
mask0_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(contours)
c = max(cnts, key=cv2.contourArea)
extTop = tuple(c[c[:, :, 1].argmin()][0])
extBot = tuple(c[c[:, :, 1].argmax()][0])
extBot = list(extBot)
extTop = list(extTop)
pad_range = int((extBot[1]-extTop[1])*0.05)
# seg mask already reaches to the edge
if (int(extTop[1]) <= 5 and int(extTop[1]) > 0) and (comb.shape[0] > int(extBot[1]) and int(extBot[1]) >= comb.shape[0]-5):
# pad with pure white, top 100 px, bottom 100 px
comb = cv2.copyMakeBorder(
comb, pad_range+5, pad_range+5, 0, 0, cv2.BORDER_CONSTANT, value=[255, 255, 255])
elif int(extTop[1]) <= 0 or int(extBot[1]) >= comb.shape[0]:
print('PAD: body out of boundary', fname) # should not happened
return {}
else:
# 105 instead of 100: give some extra space
comb = cv2.copyMakeBorder(
comb, pad_range+5, pad_range+5, 0, 0, cv2.BORDER_REPLICATE)
extBot[1] = extBot[1] + pad_range+5
extTop[1] = extTop[1] + pad_range+5
extLeft = tuple(c[c[:, :, 0].argmin()][0])
extRight = tuple(c[c[:, :, 0].argmax()][0])
extLeft = list(extLeft)
extRight = list(extRight)
person_ymin = int(extTop[1])-pad_range # 100
person_ymax = int(extBot[1])+pad_range # 100 #height
if person_ymin < 0 or person_ymax > comb.shape[0]: # out of range
return {}
person_xmin = int(extLeft[0])
person_xmax = int(extRight[0])
rect = [person_xmin, person_xmax, person_ymin, person_ymax]
# recimg = copy.deepcopy(comb)
# cv2.rectangle(recimg,(person_xmin,person_ymin),(person_xmax,person_ymax),(0,255,0),2)
# cv2.imwrite(f'{args.output_folder}/middle_result/{fname}_rec.png',recimg)
# detect keypoints
keypoints, subset = body_estimation(comb)
# print(keypoints, subset, len(subset))
if len(subset) != 1 or (len(subset) == 1 and subset[0][-1] < 15):
print(
f'Processing \'{fname}\'. Please import image contains one person only. Also can check segmentation mask. ')
continue
# canvas = copy.deepcopy(comb)
# canvas = util.draw_bodypose(canvas, keypoints, subset, show_number=True)
# cv2.imwrite(f'{args.output_folder}/middle_result/{fname}_keypoints.png',canvas)
comb = crop_img_with_padding(comb, keypoints, rect)
cv2.imwrite(f'{args.output_folder}/{fname}.png', comb)
print(f' -- Finished processing \'{fname}\'. --')
# except:
# print(f'Processing \'{fname}\'. Not satisfied the alignment strategy.')
if __name__ == '__main__':
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
t1 = time.time()
arg_formatter = argparse.ArgumentDefaultsHelpFormatter
description = 'StyleGAN-Human data process'
parser = argparse.ArgumentParser(formatter_class=arg_formatter,
description=description)
parser.add_argument('--image-folder', type=str, dest='image_folder')
parser.add_argument('--output-folder',
dest='output_folder', default='results', type=str)
# parser.add_argument('--cfg', dest='cfg for segmentation', default='PP_HumanSeg/export_model/ppseg_lite_portrait_398x224_with_softmax/deploy.yaml', type=str)
print('parsing arguments')
cmd_args = parser.parse_args()
run(cmd_args)
print('total time elapsed: ', str(time.time() - t1))
|