File size: 2,820 Bytes
a0bcaae
bb0f5a9
 
a0bcaae
 
 
bb0f5a9
 
 
a0bcaae
 
 
 
 
 
bb0f5a9
 
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
title: DragGan - Drag Your GAN - Inversion
emoji: 🔄🐉
colorFrom: purple
colorTo: pink
sdk: gradio
python_version: 3.8.17
sdk_version: 3.36.1
app_file: visualizer_drag_gradio_inversion.py
pinned: false
---


# Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

https://arxiv.org/abs/2305.10973
https://huggingface.co/DragGan/DragGan-Models

<p align="center">
    <img src="DragGAN.gif", width="700">
</p>

**Figure:** *Drag your GAN.*

> **Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold** <br>
> Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, Christian Theobalt<br>
> *SIGGRAPH 2023 Conference Proceedings*

## Requirements

Please follow the requirements of [https://github.com/NVlabs/stylegan3](https://github.com/NVlabs/stylegan3).

## Download pre-trained StyleGAN2 weights

To download pre-trained weights, simply run:
```sh
sh scripts/download_model.sh
```
If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`.

Feel free to try other pretrained StyleGAN.

## Run DragGAN GUI

To start the DragGAN GUI, simply run:
```sh
sh scripts/gui.sh
```

This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI.

You can run DragGAN Gradio demo as well:
```sh
python visualizer_drag_gradio.py
```

## Acknowledgement

This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human).

## License

The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/).
However, most of this project are available under a separate license terms: all codes used or modified from [StyleGAN3](https://github.com/NVlabs/stylegan3) is under the [Nvidia Source Code License](https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt).

Any form of use and derivative of this code must preserve the watermarking functionality.

## BibTeX

```bibtex
@inproceedings{pan2023draggan,
    title={Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold},
    author={Pan, Xingang and Tewari, Ayush, and Leimk{\"u}hler, Thomas and Liu, Lingjie and Meka, Abhimitra and Theobalt, Christian},
    booktitle = {ACM SIGGRAPH 2023 Conference Proceedings},
    year={2023}
}
```