File size: 7,196 Bytes
bb0f5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from enum import Enum
import math
import numpy as np
import torch
from torch import nn
from torch.nn import Conv2d, BatchNorm2d, PReLU, Sequential, Module

from PTI.models.e4e.encoders.helpers import get_blocks, bottleneck_IR, bottleneck_IR_SE, _upsample_add
from PTI.models.e4e.stylegan2.model import EqualLinear


class ProgressiveStage(Enum):
    WTraining = 0
    Delta1Training = 1
    Delta2Training = 2
    Delta3Training = 3
    Delta4Training = 4
    Delta5Training = 5
    Delta6Training = 6
    Delta7Training = 7
    Delta8Training = 8
    Delta9Training = 9
    Delta10Training = 10
    Delta11Training = 11
    Delta12Training = 12
    Delta13Training = 13
    Delta14Training = 14
    Delta15Training = 15
    Delta16Training = 16
    Delta17Training = 17
    Inference = 18


class GradualStyleBlock(Module):
    def __init__(self, in_c, out_c, spatial):
        super(GradualStyleBlock, self).__init__()
        self.out_c = out_c
        self.spatial = spatial
        num_pools = int(np.log2(spatial))
        modules = []
        modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
                    nn.LeakyReLU()]
        for i in range(num_pools - 1):
            modules += [
                Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
                nn.LeakyReLU()
            ]
        self.convs = nn.Sequential(*modules)
        self.linear = EqualLinear(out_c, out_c, lr_mul=1)

    def forward(self, x):
        x = self.convs(x)
        x = x.view(-1, self.out_c)
        x = self.linear(x)
        return x


class GradualStyleEncoder(Module):
    def __init__(self, num_layers, mode='ir', opts=None):
        super(GradualStyleEncoder, self).__init__()
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
                                      BatchNorm2d(64),
                                      PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(unit_module(bottleneck.in_channel,
                                           bottleneck.depth,
                                           bottleneck.stride))
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        log_size = int(math.log(opts.stylegan_size, 2))
        self.style_count = 2 * log_size - 2
        self.coarse_ind = 3
        self.middle_ind = 7
        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32)
            else:
                style = GradualStyleBlock(512, 512, 64)
            self.styles.append(style)
        self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        x = self.input_layer(x)

        latents = []
        modulelist = list(self.body._modules.values())
        for i, l in enumerate(modulelist):
            x = l(x)
            if i == 6:
                c1 = x
            elif i == 20:
                c2 = x
            elif i == 23:
                c3 = x

        for j in range(self.coarse_ind):
            latents.append(self.styles[j](c3))

        p2 = _upsample_add(c3, self.latlayer1(c2))
        for j in range(self.coarse_ind, self.middle_ind):
            latents.append(self.styles[j](p2))

        p1 = _upsample_add(p2, self.latlayer2(c1))
        for j in range(self.middle_ind, self.style_count):
            latents.append(self.styles[j](p1))

        out = torch.stack(latents, dim=1)
        return out


class Encoder4Editing(Module):
    def __init__(self, num_layers, mode='ir', opts=None):
        super(Encoder4Editing, self).__init__()
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
                                      BatchNorm2d(64),
                                      PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(unit_module(bottleneck.in_channel,
                                           bottleneck.depth,
                                           bottleneck.stride))
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        log_size = int(math.log(opts.stylegan_size, 2))
        self.style_count = 2 * log_size - 2
        self.coarse_ind = 3
        self.middle_ind = 7

        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32)
            else:
                style = GradualStyleBlock(512, 512, 64)
            self.styles.append(style)

        self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)

        self.progressive_stage = ProgressiveStage.Inference

    def get_deltas_starting_dimensions(self):
        ''' Get a list of the initial dimension of every delta from which it is applied '''
        return list(range(self.style_count))  # Each dimension has a delta applied to it

    def set_progressive_stage(self, new_stage: ProgressiveStage):
        self.progressive_stage = new_stage
        print('Changed progressive stage to: ', new_stage)

    def forward(self, x):
        x = self.input_layer(x)

        modulelist = list(self.body._modules.values())
        for i, l in enumerate(modulelist):
            x = l(x)
            if i == 6:
                c1 = x
            elif i == 20:
                c2 = x
            elif i == 23:
                c3 = x

        # Infer main W and duplicate it
        w0 = self.styles[0](c3)
        w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2)
        stage = self.progressive_stage.value
        features = c3
        for i in range(1, min(stage + 1, self.style_count)):  # Infer additional deltas
            if i == self.coarse_ind:
                p2 = _upsample_add(c3, self.latlayer1(c2))  # FPN's middle features
                features = p2
            elif i == self.middle_ind:
                p1 = _upsample_add(p2, self.latlayer2(c1))  # FPN's fine features
                features = p1
            delta_i = self.styles[i](features)
            w[:, i] += delta_i
        return w