File size: 4,672 Bytes
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
bb0f5a9
a0bcaae
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
bb0f5a9
 
a0bcaae
bb0f5a9
 
a0bcaae
 
bb0f5a9
 
 
 
 
 
 
 
a0bcaae
bb0f5a9
a0bcaae
bb0f5a9
 
 
 
a0bcaae
bb0f5a9
a0bcaae
bb0f5a9
 
 
 
a0bcaae
bb0f5a9
a0bcaae
bb0f5a9
 
 
 
a0bcaae
 
 
 
bb0f5a9
a0bcaae
 
bb0f5a9
a0bcaae
bb0f5a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (c) SenseTime Research. All rights reserved.

# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html


## this script is for generating images from pre-trained network based on StyleGAN1 (TensorFlow) and StyleGAN2-ada (PyTorch) ##

import os
import click
import dnnlib
import numpy as np
import PIL.Image
import legacy
from typing import List, Optional

"""
Generate images using pretrained network pickle.
Examples:

\b
# Generate human full-body images without truncation
python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 \\
    --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2

\b
# Generate human full-body images with truncation 
python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=0.8 --seeds=0-100\\
    --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2

# \b
# Generate human full-body images using stylegan V1
# python generate.py --outdir=outputs/generate/stylegan_human_v1_1024  \\
#     --network=pretrained_models/stylegan_human_v1_1024.pkl --version 1
"""


@click.command()
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--seeds', type=legacy.num_range, help='List of random seeds')
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--outdir', help='Where to save the output images', default='outputs/generate/', type=str, required=True, metavar='DIR')
@click.option('--version', help="stylegan version, 1, 2 or 3", type=int, default=2)
def generate_images(
    ctx: click.Context,
    network_pkl: str,
    seeds: Optional[List[int]],
    truncation_psi: float,
    noise_mode: str,
    outdir: str,
    version: int
):

    print('Loading networks from "%s"...' % network_pkl)
    if version == 1:
        import dnnlib.tflib as tflib
        tflib.init_tf()
        G, D, Gs = legacy.load_pkl(network_pkl)

    else:
        import torch
        device = torch.device('cuda')
        with dnnlib.util.open_url(network_pkl) as f:
            G = legacy.load_network_pkl(f)['G_ema'].to(device)  # type: ignore
    os.makedirs(outdir, exist_ok=True)

    if seeds is None:
        ctx.fail('--seeds option is required.')

    # Generate images.
    target_z = np.array([])
    target_w = np.array([])
    latent_out = outdir.replace('/images/', '')
    for seed_idx, seed in enumerate(seeds):
        if seed % 5000 == 0:
            print('Generating image for seed %d (%d/%d) ...' %
                  (seed, seed_idx, len(seeds)))

        if version == 1:  # stylegan v1
            z = np.random.RandomState(seed).randn(1, Gs.input_shape[1])
            # Generate image.
            fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
            if noise_mode == 'const':
                randomize_noise = False
            else:
                randomize_noise = True
            images = Gs.run(z, None, truncation_psi=truncation_psi,
                            randomize_noise=randomize_noise, output_transform=fmt)
            PIL.Image.fromarray(images[0], 'RGB').save(
                f'{outdir}/seed{seed:04d}.png')

        else:  # stylegan v2/v3
            label = torch.zeros([1, G.c_dim], device=device)
            z = torch.from_numpy(np.random.RandomState(
                seed).randn(1, G.z_dim)).to(device)
            if target_z.size == 0:
                target_z = z.cpu()
            else:
                target_z = np.append(target_z, z.cpu(), axis=0)

            w = G.mapping(z, label, truncation_psi=truncation_psi)
            img = G.synthesis(w, noise_mode=noise_mode, force_fp32=True)
            if target_w.size == 0:
                target_w = w.cpu()
            else:
                target_w = np.append(target_w, w.cpu(), axis=0)

            img = (img.permute(0, 2, 3, 1) * 127.5 +
                   128).clamp(0, 255).to(torch.uint8)
            PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(
                f'{outdir}/seed{seed:04d}.png')
    # print(target_z)
    # print(target_z.shape,target_w.shape)


# ----------------------------------------------------------------------------

if __name__ == "__main__":
    generate_images()

# ----------------------------------------------------------------------------