Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ from langchain.chains import RetrievalQA
|
|
17 |
def loading_pdf():
|
18 |
return "Loading..."
|
19 |
|
20 |
-
def pdf_changes(pdf_doc):
|
21 |
|
22 |
loader = OnlinePDFLoader(pdf_doc.name)
|
23 |
documents = loader.load()
|
@@ -26,7 +26,7 @@ def pdf_changes(pdf_doc):
|
|
26 |
embeddings = HuggingFaceHubEmbeddings()
|
27 |
db = Chroma.from_documents(texts, embeddings)
|
28 |
retriever = db.as_retriever()
|
29 |
-
llm = HuggingFaceHub(repo_id=
|
30 |
global qa
|
31 |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
32 |
return "Ready"
|
@@ -66,6 +66,7 @@ with gr.Blocks(css=css) as demo:
|
|
66 |
|
67 |
with gr.Column():
|
68 |
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
|
|
69 |
with gr.Row():
|
70 |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
71 |
load_pdf = gr.Button("Load pdf to langchain")
|
@@ -73,8 +74,9 @@ with gr.Blocks(css=css) as demo:
|
|
73 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
74 |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
75 |
submit_btn = gr.Button("Send message")
|
76 |
-
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
77 |
-
|
|
|
78 |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
79 |
bot, chatbot, chatbot
|
80 |
)
|
|
|
17 |
def loading_pdf():
|
18 |
return "Loading..."
|
19 |
|
20 |
+
def pdf_changes(pdf_doc, repo_id):
|
21 |
|
22 |
loader = OnlinePDFLoader(pdf_doc.name)
|
23 |
documents = loader.load()
|
|
|
26 |
embeddings = HuggingFaceHubEmbeddings()
|
27 |
db = Chroma.from_documents(texts, embeddings)
|
28 |
retriever = db.as_retriever()
|
29 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0.1, "max_new_tokens":300})
|
30 |
global qa
|
31 |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
32 |
return "Ready"
|
|
|
66 |
|
67 |
with gr.Column():
|
68 |
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
69 |
+
repo_id = gr.Dropdown(label="LLM", choices=["google/flan-ul2", "stabilityai/stablelm-tuned-alpha-3b", "databricks/dolly-v2-3b", "Writer/camel-5b-hf" ], value="google/flan-ul2")
|
70 |
with gr.Row():
|
71 |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
72 |
load_pdf = gr.Button("Load pdf to langchain")
|
|
|
74 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
75 |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
76 |
submit_btn = gr.Button("Send message")
|
77 |
+
#load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
78 |
+
repo_id.change(pdf_changes, inputs=[pdf_doc, repo_id], langchain_status, queue=False)
|
79 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc, repo_id], langchain_status, queue=False)
|
80 |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
81 |
bot, chatbot, chatbot
|
82 |
)
|