Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.document_loaders import OnlinePDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0) | |
from langchain.llms import HuggingFaceHub | |
flan_ul2 = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":300}) | |
from langchain.embeddings import HuggingFaceHubEmbeddings | |
embeddings = HuggingFaceHubEmbeddings() | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
def pdf_changes(pdf_doc): | |
loader = OnlinePDFLoader(pdf_doc.name) | |
documents = loader.load() | |
texts = text_splitter.split_documents(documents) | |
db = Chroma.from_documents(texts, embeddings) | |
retriever = db.as_retriever() | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=flan_ul2, chain_type="stuff", retriever=retriever, return_source_documents=True) | |
return "Ready" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
print(history) | |
return history, "" | |
def bot(history): | |
print(history[-1][0]) | |
response = infer(history[-1][0]) | |
history[-1][1] = response['result'] | |
return history | |
def infer(question): | |
query = question | |
result = qa({"query": query}) | |
return result | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file") | |
langchain_status = gr.Textbox() | |
load_pdf = gr.Button("Load pdf to langchain") | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) | |
question = gr.Textbox(label="Question") | |
load_pdf.click(pdf_changes, pdf_doc, langchain_status, queue=False) | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
demo.launch() |