File size: 20,281 Bytes
df13f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import trimesh
import torch
import numpy as np
import os
import math
import torchvision
from tqdm import tqdm
import cv2  # Assuming OpenCV is used for image saving
from PIL import Image
import pytorch3d
import random
from PIL import ImageGrab
torchvision
from torchvision.utils import save_image
from pytorch3d.renderer import (
    PointsRasterizationSettings,
    PointsRenderer,
    PointsRasterizer,
    AlphaCompositor,
    PerspectiveCameras,
)
import imageio
import torch.nn.functional as F
from torchvision.transforms import ToPILImage
import copy
from scipy.interpolate import interp1d
from scipy.interpolate import UnivariateSpline
from scipy.spatial.transform import Rotation as R
from scipy.spatial.transform import Slerp
import sys
sys.path.append('./extern/dust3r')
from dust3r.utils.device import to_numpy
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors

def save_video(data,images_path,folder=None):
    if isinstance(data, np.ndarray):
        tensor_data = (torch.from_numpy(data) * 255).to(torch.uint8)
    elif isinstance(data, torch.Tensor):
        tensor_data = (data.detach().cpu() * 255).to(torch.uint8)
    elif isinstance(data, list):
        folder = [folder]*len(data)
        images = [np.array(Image.open(os.path.join(folder_name,path))) for folder_name,path in zip(folder,data)]
        stacked_images = np.stack(images, axis=0)
        tensor_data = torch.from_numpy(stacked_images).to(torch.uint8)
    torchvision.io.write_video(images_path, tensor_data, fps=8, video_codec='h264', options={'crf': '10'})

def get_input_dict(img_tensor,idx,dtype = torch.float32):

    return {'img':F.interpolate(img_tensor.to(dtype), size=(288, 512), mode='bilinear', align_corners=False), 'true_shape': np.array([[288, 512]], dtype=np.int32), 'idx': idx, 'instance': str(idx), 'img_ori':img_tensor.to(dtype)}
    # return {'img':F.interpolate(img_tensor.to(dtype), size=(288, 512), mode='bilinear', align_corners=False), 'true_shape': np.array([[288, 512]], dtype=np.int32), 'idx': idx, 'instance': str(idx), 'img_ori':ToPILImage()((img_tensor.squeeze(0)+ 1) / 2)}


def rotate_theta(c2ws_input, theta, phi, r, device): 
    # theta: 图像的倾角,新的y’轴(位于yoz平面)与y轴的夹角
    #让相机在以[0,0,depth_avg]为球心的球面上运动,可以先让其在[0,0,0]为球心的球面运动,方便计算旋转矩阵,之后在平移
    c2ws = copy.deepcopy(c2ws_input)
    c2ws[:,2, 3] = c2ws[:,2, 3] + r  #将相机坐标系沿着世界坐标系-z方向平移r
    # 计算旋转向量
    theta = torch.deg2rad(torch.tensor(theta)).to(device)
    phi = torch.deg2rad(torch.tensor(phi)).to(device)
    v = torch.tensor([0, torch.cos(theta), torch.sin(theta)])
    # 计算反对称矩阵
    v_x = torch.zeros(3, 3).to(device)
    v_x[0, 1] = -v[2]
    v_x[0, 2] = v[1]
    v_x[1, 0] = v[2]
    v_x[1, 2] = -v[0]
    v_x[2, 0] = -v[1]
    v_x[2, 1] = v[0]

    # 计算反对称矩阵的平方
    v_x_square = torch.matmul(v_x, v_x)

    # 计算旋转矩阵
    R = torch.eye(3).to(device) + torch.sin(phi) * v_x + (1 - torch.cos(phi)) * v_x_square

    # 转换为齐次表示
    R_h = torch.eye(4)
    R_h[:3, :3] = R
    Rot_mat = R_h.to(device)

    c2ws = torch.matmul(Rot_mat, c2ws)
    c2ws[:,2, 3]= c2ws[:,2, 3] - r #最后减去r,相当于绕着z=|r|为中心旋转

    return c2ws

def sphere2pose(c2ws_input, theta, phi, r, device):
    c2ws = copy.deepcopy(c2ws_input)

    #先沿着世界坐标系z轴方向平移再旋转
    c2ws[:,2,3] += r

    theta = torch.deg2rad(torch.tensor(theta)).to(device)
    sin_value_x = torch.sin(theta)
    cos_value_x = torch.cos(theta)
    rot_mat_x = torch.tensor([[1, 0, 0, 0],
                    [0, cos_value_x, -sin_value_x, 0],
                    [0, sin_value_x, cos_value_x, 0],
                    [0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device)
    
    phi = torch.deg2rad(torch.tensor(phi)).to(device)
    sin_value_y = torch.sin(phi)
    cos_value_y = torch.cos(phi)
    rot_mat_y = torch.tensor([[cos_value_y, 0, sin_value_y, 0],
                    [0, 1, 0, 0],
                    [-sin_value_y, 0, cos_value_y, 0],
                    [0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device)
    
    c2ws = torch.matmul(rot_mat_x,c2ws)
    c2ws = torch.matmul(rot_mat_y,c2ws)

    return c2ws 

def generate_candidate_poses(c2ws_anchor,H,W,fs,c,theta, phi,num_candidates,device):
    # Initialize a camera.
    """
    The camera coordinate sysmte in COLMAP is right-down-forward
    Pytorch3D is left-up-forward
    """
    if num_candidates == 2:
        thetas = np.array([0,-theta])
        phis = np.array([phi,phi])
    elif num_candidates == 3:
        thetas = np.array([0,-theta,theta/2.]) #avoid too many downward
        phis = np.array([phi,phi,phi])
    else:
        raise ValueError("NBV mode only supports 2 or 3 candidates per iteration.")
    
    c2ws_list = []

    for th, ph in zip(thetas,phis):
        c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), r=None, device= device)
        c2ws_list.append(c2w_new)
    c2ws = torch.cat(c2ws_list,dim=0)
    num_views = c2ws.shape[0]

    R, T = c2ws[:,:3, :3], c2ws[:,:3, 3:]
    ## 将dust3r坐标系转成pytorch3d坐标系
    R = torch.stack([-R[:,:, 0], -R[:,:, 1], R[:,:, 2]], 2) # from RDF to LUF for Rotation
    new_c2w = torch.cat([R, T], 2)
    w2c = torch.linalg.inv(torch.cat((new_c2w, torch.Tensor([[[0,0,0,1]]]).to(device).repeat(new_c2w.shape[0],1,1)),1))
    R_new, T_new = w2c[:,:3, :3].permute(0,2,1), w2c[:,:3, 3] # convert R to row-major matrix
    image_size = ((H, W),)  # (h, w)
    cameras = PerspectiveCameras(focal_length=fs, principal_point=c, in_ndc=False, image_size=image_size, R=R_new, T=T_new, device=device)
    return cameras,thetas,phis

def generate_traj_specified(c2ws_anchor,H,W,fs,c,theta, phi,d_r,frame,device):
    # Initialize a camera.
    """
    The camera coordinate sysmte in COLMAP is right-down-forward
    Pytorch3D is left-up-forward
    """

    thetas = np.linspace(0,theta,frame)
    phis = np.linspace(0,phi,frame)
    rs = np.linspace(0,d_r*c2ws_anchor[0,2,3].cpu(),frame)
    c2ws_list = []
    for th, ph, r in zip(thetas,phis,rs):
        c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device)
        c2ws_list.append(c2w_new)
    c2ws = torch.cat(c2ws_list,dim=0)
    num_views = c2ws.shape[0]

    R, T = c2ws[:,:3, :3], c2ws[:,:3, 3:]
    ## 将dust3r坐标系转成pytorch3d坐标系
    R = torch.stack([-R[:,:, 0], -R[:,:, 1], R[:,:, 2]], 2) # from RDF to LUF for Rotation
    new_c2w = torch.cat([R, T], 2)
    w2c = torch.linalg.inv(torch.cat((new_c2w, torch.Tensor([[[0,0,0,1]]]).to(device).repeat(new_c2w.shape[0],1,1)),1))
    R_new, T_new = w2c[:,:3, :3].permute(0,2,1), w2c[:,:3, 3] # convert R to row-major matrix
    image_size = ((H, W),)  # (h, w)
    cameras = PerspectiveCameras(focal_length=fs, principal_point=c, in_ndc=False, image_size=image_size, R=R_new, T=T_new, device=device)
    return cameras,num_views

def generate_traj_txt(c2ws_anchor,H,W,fs,c,phi, theta, r,frame,device,viz_traj=False, save_dir = None):
    # Initialize a camera.
    """
    The camera coordinate sysmte in COLMAP is right-down-forward
    Pytorch3D is left-up-forward
    """

    if len(phi)>3:
        phis = txt_interpolation(phi,frame,mode='smooth')
        phis[0] = phi[0]
        phis[-1] = phi[-1]
    else:
        phis = txt_interpolation(phi,frame,mode='linear')

    if len(theta)>3:
        thetas = txt_interpolation(theta,frame,mode='smooth')
        thetas[0] = theta[0]
        thetas[-1] = theta[-1]
    else:
        thetas = txt_interpolation(theta,frame,mode='linear')
    
    if len(r) >3:
        rs = txt_interpolation(r,frame,mode='smooth')
        rs[0] = r[0]
        rs[-1] = r[-1]        
    else:
        rs = txt_interpolation(r,frame,mode='linear')
    rs = rs*c2ws_anchor[0,2,3].cpu().numpy()

    c2ws_list = []
    for th, ph, r in zip(thetas,phis,rs):
        c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device)
        c2ws_list.append(c2w_new)
    c2ws = torch.cat(c2ws_list,dim=0)

    if viz_traj:
        poses = c2ws.cpu().numpy()
        # visualizer(poses, os.path.join(save_dir,'viz_traj.png'))
        frames = [visualizer_frame(poses, i) for i in range(len(poses))]
        save_video(np.array(frames)/255.,os.path.join(save_dir,'viz_traj.mp4'))

    num_views = c2ws.shape[0]

    R, T = c2ws[:,:3, :3], c2ws[:,:3, 3:]
    ## 将dust3r坐标系转成pytorch3d坐标系
    R = torch.stack([-R[:,:, 0], -R[:,:, 1], R[:,:, 2]], 2) # from RDF to LUF for Rotation
    new_c2w = torch.cat([R, T], 2)
    w2c = torch.linalg.inv(torch.cat((new_c2w, torch.Tensor([[[0,0,0,1]]]).to(device).repeat(new_c2w.shape[0],1,1)),1))
    R_new, T_new = w2c[:,:3, :3].permute(0,2,1), w2c[:,:3, 3] # convert R to row-major matrix
    image_size = ((H, W),)  # (h, w)
    cameras = PerspectiveCameras(focal_length=fs, principal_point=c, in_ndc=False, image_size=image_size, R=R_new, T=T_new, device=device)
    return cameras,num_views

def setup_renderer(cameras, image_size):
    # Define the settings for rasterization and shading.
    raster_settings = PointsRasterizationSettings(
        image_size=image_size,
        radius = 0.01,
        points_per_pixel = 10,
        bin_size = 0
    )

    renderer = PointsRenderer(
        rasterizer=PointsRasterizer(cameras=cameras, raster_settings=raster_settings),
        compositor=AlphaCompositor()
    )

    render_setup =  {'cameras': cameras, 'raster_settings': raster_settings, 'renderer': renderer}

    return render_setup

def interpolate_sequence(sequence, k,device):

    N, M = sequence.size()
    weights = torch.linspace(0, 1, k+1).view(1, -1, 1).to(device)
    left_values = sequence[:-1].unsqueeze(1).repeat(1, k+1, 1)
    right_values = sequence[1:].unsqueeze(1).repeat(1, k+1, 1)
    new_sequence = torch.einsum("ijk,ijl->ijl", (1 - weights), left_values) + torch.einsum("ijk,ijl->ijl", weights, right_values)
    new_sequence = new_sequence.reshape(-1, M)
    new_sequence = torch.cat([new_sequence, sequence[-1].view(1, -1)], dim=0)
    return new_sequence

def focus_point_fn(c2ws: torch.Tensor) -> torch.Tensor:
    """Calculate nearest point to all focal axes in camera-to-world matrices."""
    # Extract camera directions and origins from c2ws
    directions, origins = c2ws[:, :3, 2:3], c2ws[:, :3, 3:4]
    m = torch.eye(3).to(c2ws.device) - directions * torch.transpose(directions, 1, 2)
    mt_m = torch.transpose(m, 1, 2) @ m
    focus_pt = torch.inverse(mt_m.mean(0)) @ (mt_m @ origins).mean(0)[:, 0]
    return focus_pt

def generate_camera_path(c2ws: torch.Tensor, n_inserts: int = 15, device='cuda') -> torch.Tensor:
    n_poses = c2ws.shape[0] 
    interpolated_poses = []

    for i in range(n_poses-1):
        start_pose = c2ws[i]
        end_pose = c2ws[(i + 1) % n_poses]
        focus_point = focus_point_fn(torch.stack([start_pose,end_pose]))
        interpolated_path = interpolate_poses(start_pose, end_pose, focus_point, n_inserts, device)
        
        # Exclude the last pose (end_pose) for all pairs
        interpolated_path = interpolated_path[:-1]

        interpolated_poses.append(interpolated_path)
    # Concatenate all the interpolated paths
    interpolated_poses.append(c2ws[-1:])
    full_path = torch.cat(interpolated_poses, dim=0)
    return full_path

def interpolate_poses(start_pose: torch.Tensor, end_pose: torch.Tensor, focus_point: torch.Tensor, n_inserts: int = 15, device='cuda') -> torch.Tensor:
    dtype = start_pose.dtype
    start_distance = torch.sqrt((start_pose[0, 3] - focus_point[0])**2 + (start_pose[1, 3] - focus_point[1])**2 + (start_pose[2, 3] - focus_point[2])**2)
    end_distance = torch.sqrt((end_pose[0, 3] - focus_point[0])**2 + (end_pose[1, 3] - focus_point[1])**2 + (end_pose[2, 3] - focus_point[2])**2)
    start_rot = R.from_matrix(start_pose[:3, :3].cpu().numpy())
    end_rot = R.from_matrix(end_pose[:3, :3].cpu().numpy())
    slerp_obj = Slerp([0, 1], R.from_quat([start_rot.as_quat(), end_rot.as_quat()]))

    inserted_c2ws = []

    for t in torch.linspace(0., 1., n_inserts + 2, dtype=dtype):  # Exclude the first and last point
        interpolated_rot = slerp_obj(t).as_matrix()
        interpolated_translation = (1 - t) * start_pose[:3, 3] + t * end_pose[:3, 3]
        interpolated_distance = (1 - t) * start_distance + t * end_distance
        direction = (interpolated_translation - focus_point) / torch.norm(interpolated_translation - focus_point)
        interpolated_translation = focus_point + direction * interpolated_distance

        inserted_pose = torch.eye(4, dtype=dtype).to(device)
        inserted_pose[:3, :3] = torch.from_numpy(interpolated_rot).to(device)
        inserted_pose[:3, 3] = interpolated_translation
        inserted_c2ws.append(inserted_pose)

    path = torch.stack(inserted_c2ws)
    return path

def inv(mat):
    """ Invert a torch or numpy matrix
    """
    if isinstance(mat, torch.Tensor):
        return torch.linalg.inv(mat)
    if isinstance(mat, np.ndarray):
        return np.linalg.inv(mat)
    raise ValueError(f'bad matrix type = {type(mat)}')

def save_pointcloud_with_normals(imgs, pts3d, msk, save_path, mask_pc, reduce_pc):
    pc = get_pc(imgs, pts3d, msk,mask_pc,reduce_pc)  # Assuming get_pc is defined elsewhere and returns a trimesh point cloud

    # Define a default normal, e.g., [0, 1, 0]
    default_normal = [0, 1, 0]

    # Prepare vertices, colors, and normals for saving
    vertices = pc.vertices
    colors = pc.colors
    normals = np.tile(default_normal, (vertices.shape[0], 1))

    # Construct the header of the PLY file
    header = """ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property float nx
property float ny
property float nz
end_header
""".format(len(vertices))

    # Write the PLY file
    with open(save_path, 'w') as ply_file:
        ply_file.write(header)
        for vertex, color, normal in zip(vertices, colors, normals):
            ply_file.write('{} {} {} {} {} {} {} {} {}\n'.format(
                vertex[0], vertex[1], vertex[2],
                int(color[0]), int(color[1]), int(color[2]),
                normal[0], normal[1], normal[2]
            ))


def get_pc(imgs, pts3d, mask, mask_pc=False, reduce_pc=False):
    imgs = to_numpy(imgs)
    pts3d = to_numpy(pts3d)
    mask = to_numpy(mask)
    
    if mask_pc:
        pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
        col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
    else:
        pts = np.concatenate([p for p in pts3d])
        col = np.concatenate([p for p in imgs])

    if reduce_pc:
        pts = pts.reshape(-1, 3)[::3]
        col = col.reshape(-1, 3)[::3]
    else:
        pts = pts.reshape(-1, 3)
        col = col.reshape(-1, 3)
    
    #mock normals:
    normals = np.tile([0, 1, 0], (pts.shape[0], 1))
    
    pct = trimesh.PointCloud(pts, colors=col)
    # debug
    # pct.export('output.ply')
    # print('exporting output.ply')
    pct.vertices_normal = normals  # Manually add normals to the point cloud
    
    return pct#, pts

def world_to_kth(poses, k):
    # 将世界坐标系转到和第k个pose的相机坐标系一致
    kth_pose = poses[k]
    inv_kth_pose = torch.inverse(kth_pose)
    new_poses = torch.bmm(inv_kth_pose.unsqueeze(0).expand_as(poses), poses)
    return new_poses

def world_point_to_kth(poses, points, k, device):
    # 将世界坐标系转到和第k个pose的相机坐标系一致,同时处理点云
    kth_pose = poses[k]
    inv_kth_pose = torch.inverse(kth_pose)
    # 给所有pose左成kth_w2c,将其都变到kth_pose的camera coordinate下
    new_poses = torch.bmm(inv_kth_pose.unsqueeze(0).expand_as(poses), poses)
    N, W, H, _ = points.shape
    points = points.view(N, W * H, 3)
    homogeneous_points = torch.cat([points, torch.ones(N, W*H, 1).to(device)], dim=-1)  
    new_points = inv_kth_pose.unsqueeze(0).expand(N, -1, -1).unsqueeze(1)@ homogeneous_points.unsqueeze(-1)
    new_points = new_points.squeeze(-1)[...,:3].view(N, W, H, _)

    return new_poses, new_points


def world_point_to_obj(poses, points, k, r, elevation, device):
    ## 作用:将世界坐标系转到object的中心

    ## 先将世界坐标系转到指定相机
    poses, points = world_point_to_kth(poses, points, k, device)
    
    ## 定义目标坐标系位姿, 原点位于object中心(远世界坐标系[0,0,r]),Y轴向上, Z轴垂直屏幕向外, X轴向右
    elevation_rad = torch.deg2rad(torch.tensor(180-elevation)).to(device)
    sin_value_x = torch.sin(elevation_rad)
    cos_value_x = torch.cos(elevation_rad)
    R = torch.tensor([[1, 0, 0,],
                    [0, cos_value_x, sin_value_x],
                    [0, -sin_value_x, cos_value_x]]).to(device)
    
    t = torch.tensor([0, 0, r]).to(device)
    pose_obj = torch.eye(4).to(device)
    pose_obj[:3, :3] = R
    pose_obj[:3, 3] = t

    ## 给所有点和pose乘以目标坐标系的逆(w2c),将它们变换到目标坐标系下
    inv_obj_pose = torch.inverse(pose_obj)
    new_poses = torch.bmm(inv_obj_pose.unsqueeze(0).expand_as(poses), poses)
    N, W, H, _ = points.shape
    points = points.view(N, W * H, 3)
    homogeneous_points = torch.cat([points, torch.ones(N, W*H, 1).to(device)], dim=-1)  
    new_points = inv_obj_pose.unsqueeze(0).expand(N, -1, -1).unsqueeze(1)@ homogeneous_points.unsqueeze(-1)
    new_points = new_points.squeeze(-1)[...,:3].view(N, W, H, _)
    
    return new_poses, new_points

def txt_interpolation(input_list,n,mode = 'smooth'):
    x = np.linspace(0, 1, len(input_list))
    if mode == 'smooth':
        f = UnivariateSpline(x, input_list, k=3)
    elif mode == 'linear':
        f = interp1d(x, input_list)
    else:
        raise KeyError(f"Invalid txt interpolation mode: {mode}")
    xnew = np.linspace(0, 1, n)
    ynew = f(xnew)
    return ynew

def visualizer(camera_poses, save_path="out.png"):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection="3d")

    colors = ["blue" for _ in camera_poses]
    for pose, color in zip(camera_poses, colors):

        camera_positions = pose[:3, 3]
        ax.scatter(
            camera_positions[0],
            camera_positions[1],
            camera_positions[2],
            c=color,
            marker="o",
        )

    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_zlabel("Z")
    ax.set_title("Camera trajectory")
    # ax.view_init(90+30, -90)
    plt.savefig(save_path)
    plt.close()

def visualizer_frame(camera_poses, highlight_index):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection="3d")
    # 获取camera_positions[2]的最大值和最小值
    z_values = [pose[:3, 3][2] for pose in camera_poses]
    z_min, z_max = min(z_values), max(z_values)

    # 创建一个颜色映射对象
    cmap = mcolors.LinearSegmentedColormap.from_list("mycmap", ["#00008B", "#ADD8E6"])
    # cmap = plt.get_cmap("coolwarm")
    norm = mcolors.Normalize(vmin=z_min, vmax=z_max)
    sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)

    for i, pose in enumerate(camera_poses):
        camera_positions = pose[:3, 3]
        color = "blue" if i == highlight_index else "blue"
        size = 100 if i == highlight_index else 25
        color = sm.to_rgba(camera_positions[2])  # 根据camera_positions[2]的值映射颜色
        ax.scatter(
            camera_positions[0],
            camera_positions[1],
            camera_positions[2],
            c=color,
            marker="o",
            s=size,
        )

    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_zlabel("Z")
    # ax.set_title("Camera trajectory")
    ax.view_init(90+30, -90)

    plt.ylim(-0.1,0.2)
    fig.canvas.draw()
    width, height = fig.canvas.get_width_height()
    
    img = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8').reshape(height, width, 3)
    # new_width = int(width * 0.6)
    # start_x = (width - new_width) // 2 + new_width // 5
    # end_x = start_x + new_width
    # img = img[:, start_x:end_x, :]
    
    
    plt.close()

    return img