Spaces:
Sleeping
Sleeping
File size: 10,840 Bytes
a477b7c c47605f a477b7c c47605f 455fa84 c47605f a477b7c 48d8a07 a477b7c 309caec 455fa84 c9be6b5 455fa84 309caec a6221a5 7d7c12f 577fccd a6221a5 a477b7c ec6bf88 309caec a477b7c 6adc265 ec6bf88 a477b7c ec6bf88 a477b7c 455fa84 ec6bf88 455fa84 ec6bf88 0988533 a819640 b9b37d9 447f799 ec6bf88 455fa84 ec6bf88 455fa84 ec6bf88 455fa84 c47605f a477b7c ec6bf88 c9be6b5 455fa84 a477b7c c47605f 6bf0e6a c9be6b5 a477b7c 8274d84 de4b5b9 c47605f c9be6b5 48d8a07 a477b7c ce66c61 6adc265 ce66c61 a477b7c 6adc265 a477b7c c4979f5 f7623e8 577fccd 455fa84 577fccd 34bd01c a477b7c 0649d91 77d013c 54e5650 7d7c12f 77d013c 1d46982 9235039 a477b7c 7d7c12f 084cb82 9235039 a477b7c 455fa84 a477b7c 1d46982 7d7c12f 1d46982 577fccd 084cb82 c4979f5 a477b7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
from folium import Map
import numpy as np
from ast import literal_eval
import pandas as pd
import asyncio
from gradio_folium import Folium
import folium
from folium.plugins import Fullscreen
from huggingface_hub import InferenceClient
from geopy.geocoders import Nominatim
from collections import OrderedDict
from geopy.adapters import AioHTTPAdapter
import nest_asyncio
nest_asyncio.apply()
from examples import (
description_sf,
output_example_sf,
description_loire,
output_example_loire,
description_taiwan,
output_example_taiwan,
trip_examples
)
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
llm_client = InferenceClient(model=repo_id, timeout=180)
end_sequence = "I hope that helps!"
def generate_key_points(text):
prompt = f"""
Please generate a set of key geographical points for the following description: {text}, as a json list of less than 10 dictionnaries with the following keys: 'name', 'description'.
Precise the full location in the 'name' if there is a possible ambiguity: for instance given that there are Chinatowns in several US cities, give the city name to disambiguate.
Generally try to minimize the distance between locations. Always think of the transportation means that you want to use, and the timing: morning, afternoon, where to sleep.
Only generate two sections: 'Thought:' provides your rationale for generating the points, then you list the locations in 'Key points:'.
Then generate '{end_sequence}' to indicate the end of the response.
For instance:
Description: {description_sf}
Thought: {output_example_sf}
{end_sequence}
Description: {description_loire}
Thought: {output_example_loire}
{end_sequence}
Now begin. You can make the descriptions a bit more verbose than in the examples.
Description: {text}
Thought:"""
return llm_client.text_generation(prompt, max_new_tokens=2000, stream=True, stop_sequences=[end_sequence])
def parse_llm_output(output):
rationale = "Thought: " + output.split("Key points:")[0]
key_points = output.split("Key points:")[1]
output = key_points.replace(" ", "").replace(end_sequence, "").strip()
parsed_output = literal_eval(output)
dataframe = pd.DataFrame.from_dict(parsed_output)
return dataframe, rationale
class AsyncLRUCache:
def __init__(self, maxsize=100):
self.cache = OrderedDict()
self.maxsize = maxsize
async def get(self, key):
if key not in self.cache:
return None
self.cache.move_to_end(key)
return self.cache[key]
async def aset(self, key, value):
self.set(key, value)
def set(self, key, value):
if key in self.cache:
self.cache.move_to_end(key)
self.cache[key] = value
if len(self.cache) > self.maxsize:
self.cache.popitem(last=False)
# Instantiate the cache
cache = AsyncLRUCache(maxsize=500)
preset_values = {
"Fisherman's Wharf, San Francisco": {'lat': 37.808332, 'lon': -122.415715},
'Ghirardelli Square, San Francisco': {'lat': 37.80587075, 'lon': -122.42294914207058},
'Cable Car Museum, San Francisco': {'lat': 37.79476015, 'lon': -122.41185284314184},
'Union Square, San Francisco': {'lat': 37.7875138, 'lon': -122.407159},
'Chinatown, San Francisco': {'lat': 37.7943011, 'lon': -122.4063757},
'Coit Tower, San Francisco': {'lat': 37.80237905, 'lon': -122.40583435461313},
'Chinatown, San Francisco, California': {'lat': 37.7943011, 'lon': -122.4063757},
'Chinatown, New York City, New York': {'lat': 40.7164913, 'lon': -73.9962504},
'Chinatown, Los Angeles, California': {'lat': 34.0638402, 'lon': -118.2358676},
'Chinatown, Philadelphia, Pennsylvania': {'lat': 39.9534461, 'lon': -75.1546218},
'Chinatown, Chicago, Illinois': {'lat': 41.8516579, 'lon': -87.6331383},
'Chinatown, Boston, Massachusetts': {'lat': 42.3513291, 'lon': -71.0626228},
'Chinatown, Honolulu, Hawaii': {'lat': 21.3129031, 'lon': -157.8628003},
'Chinatown, Seattle, Washington': {'lat': 47.5980601, 'lon': -122.3245246},
'Chinatown, Portland, Oregon': {'lat': 45.5251092, 'lon': -122.6744481},
'Chinatown, Las Vegas, Nevada': {'lat': 36.2823279, 'lon': -115.3310655},
'Taipei, Taiwan': {'lat': 25.0375198, 'lon': 121.5636796},
'Hualien, Taiwan': {'lat': 23.9913421, 'lon': 121.6197276},
'Taitung, Taiwan': {'lat': 22.7553667, 'lon': 121.1506},
'Kaohsiung, Taiwan': {'lat': 22.6203348, 'lon': 120.3120375},
'Tainan, Taiwan': {'lat': 22.9912348, 'lon': 120.184982},
'Chiayi, Taiwan': {'lat': 23.4591664, 'lon': 120.2930004},
'Taichung, Taiwan': {'lat': 24.163162, 'lon': 120.6478282},
'Hsinchu, Taiwan': {'lat': 24.8066333, 'lon': 120.9686833},
'Château de Blois': {'lat': 47.650198, 'lon': 1.426256515186913},
'Château de Chambord': {'lat': 47.61606945, 'lon': 1.5170501827851928},
'Château de Cheverny': {'lat': 47.50023105, 'lon': 1.4580181089595223},
'Château de Chaumont-sur-Loire': {'lat': 47.479146, 'lon': 1.181523652578578},
'Château de Chenonceau': {'lat': 47.32461905, 'lon': 1.070403778072624},
"Château d'Amboise": {'lat': 47.41362905, 'lon': 0.9859718927689629},
'Château de Villandry': {'lat': 47.34056095, 'lon': 0.5146088880523084},
"Château d'Azay-le-Rideau": {'lat': 47.25904985, 'lon': 0.465756301165524},
"Château d'Ussé": {'lat': 47.249807, 'lon': 0.2909891848913879},
'Groningen, Netherlands': {'lat': 53.2190652, 'lon': 6.5680077},
'Osnabrück, Germany': {'lat': 52.37265095, 'lon': 8.161049572938472},
'Erfurt, Germany': {'lat': 50.9777974, 'lon': 11.0287364},
'Nuremberg, Germany': {'lat': 49.453872, 'lon': 11.077298},
'Innsbruck, Austria': {'lat': 47.2654296, 'lon': 11.3927685},
'Embarcadero, San Francisco': {'lat': 37.7928637, 'lon': -122.396912},
'Pier 39, San Francisco': {'lat': 37.808703, 'lon': -122.410116},
'Palace of Fine Arts, San Francisco': {'lat': 37.80291855, 'lon': -122.44840286435331},
'Crissy Field, San Francisco': {'lat': 37.80459605, 'lon': -122.4666072420753},
'Golden Gate Bridge, San Francisco': {'lat': 37.8302731, 'lon': -122.4798443},
'Fort Point National Historic Site, San Francisco': {'lat': 37.81045495, 'lon': -122.47713831312802},
'Presidio of San Francisco': {'lat': 37.798745600000004, 'lon': -122.46458892410745}
}
for key, value in preset_values.items():
cache.set(key, value)
async def geocode_address(address):
# Check if the result is in cache
cached_location = await cache.get(address)
if cached_location:
return cached_location
# If not in cache, perform the geolocation request
async with Nominatim(
user_agent="HF-trip-planner",
adapter_factory=AioHTTPAdapter,
) as geolocator:
location = await geolocator.geocode(address, timeout=10)
if location:
coords = {'lat': location.latitude, "lon": location.longitude}
# Save the result in cache for future use
await cache.aset(address, coords)
return coords
return None
async def ageocode_addresses(addresses):
tasks = [geocode_address(address) for address in addresses]
locations = await asyncio.gather(*tasks)
return locations
def geocode_addresses(addresses):
loop = asyncio.get_event_loop()
result = loop.run_until_complete(ageocode_addresses(addresses))
return result
def create_map_from_markers(dataframe):
coordinates = geocode_addresses(dataframe["name"])
print({name: coordinates[i] for i, name in enumerate(dataframe["name"].to_list())})
dataframe["lat"] = [coords["lat"] if coords else None for coords in coordinates]
dataframe["lon"] = [coords["lon"] if coords else None for coords in coordinates]
f_map = Map(
location=[dataframe["lat"].mean(), dataframe["lon"].mean()],
zoom_start=5,
tiles="CartoDB Voyager",
)
for _, row in dataframe.iterrows():
if np.isnan(row["lat"]) or np.isnan(row["lon"]):
continue
popup_message = f"<h4 style='color: #d53e2a;'>{row['name']}</h4><p style='font-weight:500'>{row['description']}</p>"
popup_message += f"<a href='https://www.google.com/search?q={row['name']}' target='_blank'><b>Learn more about {row['name'].split(',')[0]}</b></a>"
marker = folium.Marker(
location=[row["lat"], row["lon"]],
popup=folium.Popup(popup_message, max_width=200),
icon=folium.Icon(color="yellow", icon="fa-circle-dot", prefix='fa'),
)
marker.add_to(f_map),
Fullscreen(position='topright', title='Expand me', title_cancel='Exit me', force_separate_button=True).add_to(f_map)
bounds = [[row["lat"], row["lon"]] for _, row in dataframe.iterrows()]
f_map.fit_bounds(bounds, padding=(100, 100))
return f_map
def run_display(text):
current_output = ""
for output in generate_key_points(text):
current_output += output
yield None, "```text\n" + current_output + "\n```"
current_output = current_output.replace("</s>", "")
dataframe, _ = parse_llm_output(current_output)
map = create_map_from_markers(dataframe)
yield map, "```text\n" + current_output + "\n```"
def select_example(choice):
output = trip_examples[choice]
dataframe, _ = parse_llm_output(output)
map = create_map_from_markers(dataframe)
return choice, map, "```text\n" + output + "\n```"
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue=gr.themes.colors.yellow,
secondary_hue=gr.themes.colors.blue,
)
) as demo:
gr.Markdown("# 🗺️ AI Travel Planner 🏕️\nThis personal travel planner is based on Mixtral-8x7B, called through the Hugging Face API. Describe your ideal trip below, and let our AI assistant guide you!")
text = gr.Textbox(
label="Describe your ideal trip:",
value=description_taiwan,
)
button = gr.Button("Generate trip!")
gr.Markdown("### LLM Output 👇")
example_dataframe, _ = parse_llm_output(output_example_taiwan)
display_thoughts = gr.Markdown("```text\n" + output_example_sf + "\n```")
gr.Markdown("_Click the markers on the map map to display information about the places._")
# Get initial map
starting_map = create_map_from_markers(example_dataframe)
map = Folium(value=starting_map, height=600, label="Chosen locations")
# Trip examples
clickable_examples = gr.Dropdown(choices=trip_examples.keys(), label="Try another example:", value=description_taiwan)
# Dynamics
button.click(run_display, inputs=[text], outputs=[map, display_thoughts])
clickable_examples.input(
select_example, clickable_examples, outputs=[text, map, display_thoughts]
)
if __name__ == "__main__":
demo.launch() |