File size: 5,946 Bytes
a477b7c
 
c47605f
 
a477b7c
c47605f
455fa84
c47605f
a477b7c
 
309caec
455fa84
 
 
 
309caec
a6221a5
 
 
 
 
 
 
 
a477b7c
 
 
309caec
a477b7c
 
c47605f
b4ca855
309caec
a477b7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455fa84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47605f
 
a477b7c
455fa84
 
 
 
a477b7c
 
 
 
 
c47605f
 
 
 
a477b7c
 
 
 
 
 
 
 
 
 
c47605f
 
a477b7c
 
 
 
 
 
 
 
 
 
 
 
c4979f5
34bd01c
 
c4979f5
455fa84
 
34bd01c
a477b7c
 
 
 
 
 
 
34bd01c
77d013c
 
 
 
 
383bc3f
a477b7c
 
 
 
 
455fa84
010f68b
a477b7c
309caec
34bd01c
c4979f5
 
 
a477b7c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
from folium import Map
import numpy as np
from ast import literal_eval
import pandas as pd

import asyncio
from gradio_folium import Folium
import folium
from huggingface_hub import InferenceClient
from geopy.geocoders import Nominatim
from collections import OrderedDict
from geopy.adapters import AioHTTPAdapter
import nest_asyncio
nest_asyncio.apply()

from examples import (
    description_sf,
    output_example_sf,
    description_loire,
    output_example_loire,
    df_examples
)

repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
llm_client = InferenceClient(model=repo_id, timeout=180)


def generate_key_points(text):
    prompt = f"""             
    Please generate a set of key geographical points for the following description: {text}, as a json list of less than 10 dictionnaries with the following keys: 'name', 'description'. Precise the full location in the 'name' if there is a possible ambiguity.
    Generally try to minimze the distance between locations. Always think of the transportation means that you want to use, and the timing: morning, afternoon, where to sleep.
    Only generate a 'Thought:' and a 'Key points:' sections, nothing else.

    For instance:
    Description: {description_sf}
    Thought: {output_example_sf}

    Description: {description_loire}
    Thought: {output_example_loire}

    Now begin. You can make the descriptions a bit more verbose than in the examples.

    Description: {text}
    Thought: 
    """
    return llm_client.text_generation(prompt, max_new_tokens=2000)


def parse_llm_output(output):
    rationale = "Thought: " + output.split("Key points:")[0]
    key_points = output.split("Key points:")[1]
    output = key_points.replace("    ", "")
    parsed_output = literal_eval(output)
    dataframe = pd.DataFrame.from_dict(parsed_output)
    return dataframe, rationale


class AsyncLRUCache:
    def __init__(self, maxsize=100):
        self.cache = OrderedDict()
        self.maxsize = maxsize

    async def get(self, key):
        if key not in self.cache:
            return None
        self.cache.move_to_end(key)
        return self.cache[key]

    async def set(self, key, value):
        if key in self.cache:
            self.cache.move_to_end(key)
        self.cache[key] = value
        if len(self.cache) > self.maxsize:
            self.cache.popitem(last=False)


# Instantiate the cache
cache = AsyncLRUCache(maxsize=500)

async def geocode_address(address):
    # Check if the result is in cache
    cached_location = await cache.get(address)
    if cached_location:
        return cached_location

    # If not in cache, perform the geolocation request
    async with Nominatim(
        user_agent="HF-trip-planner",
        adapter_factory=AioHTTPAdapter,
    ) as geolocator:
        location = await geolocator.geocode(address, timeout=10)
        if location:
            # Save the result in cache for future use
            await cache.set(address, location)
        return location
    
async def ageocode_addresses(addresses):
    tasks = [geocode_address(address) for address in addresses]
    locations = await asyncio.gather(*tasks)
    return locations

def geocode_addresses(addresses):
    loop = asyncio.get_event_loop()
    result = loop.run_until_complete(ageocode_addresses(addresses))
    return result


def create_map_from_markers(dataframe):
    locations = geocode_addresses(dataframe["name"])
    dataframe["lat"] = [location.latitude if location else None for location in locations]
    dataframe["lon"] = [location.longitude if location else None for location in locations]

    f_map = Map(
        location=[dataframe["lat"].mean(), dataframe["lon"].mean()],
        zoom_start=5,
        tiles="CartoDB Voyager",
    )
    for _, row in dataframe.iterrows():
        if np.isnan(row["lat"]) or np.isnan(row["lon"]):
            continue
        marker = folium.CircleMarker(
            location=[row["lat"], row["lon"]],
            radius=10,
            popup=folium.Popup(
                f"<h4>{row['name']}</h4><p>{row['description']}</p>", max_width=450
            ),
            fill=True,
            fill_color="blue",
            fill_opacity=0.6,
            color="blue",
            weight=1,
        )
        marker.add_to(f_map),

    bounds = [[row["lat"], row["lon"]] for _, row in dataframe.iterrows()]
    f_map.fit_bounds(bounds, padding=(100, 100))
    return f_map


def run_display(text):
    output = generate_key_points(text)
    dataframe, rationale = parse_llm_output(output)
    map = create_map_from_markers(dataframe)
    return map, rationale


def select_example(df, data: gr.SelectData):
    row = df.iloc[data.index[0], :]
    dataframe, rationale = parse_llm_output(row["output"])
    map = create_map_from_markers(dataframe)
    return row["description"], map, rationale


with gr.Blocks(
    theme=gr.themes.Soft(
        primary_hue=gr.themes.colors.yellow,
        secondary_hue=gr.themes.colors.blue,
    )
) as demo:
    gr.Markdown("# 🗺️ LLM trip planner (based on Mixtral)")
    text = gr.Textbox(
        label="Describe your trip here:",
        value=description_sf,
    )
    button = gr.Button()
    gr.Markdown("### LLM Output 👇\n_Click the map to see information about the places._")

    # Get initial map and rationale
    example_dataframe, example_rationale = parse_llm_output(output_example_sf)
    display_rationale = gr.Markdown(example_rationale)
    starting_map = create_map_from_markers(example_dataframe)
    map = Folium(value=starting_map, height=600, label="Chosen locations")
    button.click(run_display, inputs=[text], outputs=[map, display_rationale])

    gr.Markdown("### Other examples")
    clickable_examples = gr.DataFrame(value=df_examples, height=200)
    clickable_examples.select(
        select_example, clickable_examples, outputs=[text, map, display_rationale]
    )

if __name__ == "__main__":
    demo.launch()