|
import gradio as gr |
|
|
|
from transformers import pipeline |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Dorjzodovsuren/mongolian-gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("Dorjzodovsuren/mongolian-gpt2", from_flax=True) |
|
|
|
generation_params = { |
|
"do_sample": True, |
|
"temperature": 0.3, |
|
"top_p": 0.95, |
|
"top_k": 40, |
|
"max_new_tokens": 64, |
|
"repetition_penalty": 2.1 |
|
} |
|
|
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, **generation_params) |
|
|
|
def text_generator(text): |
|
return pipe(text)[0]["response"] |
|
|
|
demo = gr.Interface(fn=text_generator, inputs="textbox", outputs="textbox") |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |