Recon-gradio / app.py
Docfile's picture
Update app.py
0a98f37
raw
history blame
2.17 kB
import gradio as gr
from PIL import Image
import numpy as np
import cv2
import face_recognition
import os
# Load images for face recognition
Images = []
classnames = []
directory = "photos"
myList = os.listdir(directory)
for cls in myList:
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
img_path = os.path.join(directory, cls)
curImg = cv2.imread(img_path)
Images.append(curImg)
classnames.append(os.path.splitext(cls)[0])
def findEncodings(Images):
encodeList = []
for img in Images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
encodeListknown = findEncodings(Images)
# Function for face recognition
def recognize_faces(img):
image = np.array(img)
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
name = "Unknown" # Default name for unknown faces
if len(encodesCurFrame) > 0:
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classnames[matchIndex].upper()
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
print(name)
return image
# Create Gradio interface
iface = gr.Interface(
fn=recognize_faces,
inputs="image",
outputs="image",
live=True,
title="Face Recognition App",
description="This app recognizes faces in an image and updates attendance."
)
iface.launch()