Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Image processor class for Qwen2-VL.""" | |
import math | |
from typing import Dict, List, Optional, Union | |
import numpy as np | |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature | |
from transformers.image_transforms import ( | |
convert_to_rgb, | |
resize, | |
to_channel_dimension_format, | |
) | |
from transformers.image_utils import ( | |
OPENAI_CLIP_MEAN, | |
OPENAI_CLIP_STD, | |
ChannelDimension, | |
ImageInput, | |
PILImageResampling, | |
VideoInput, | |
get_image_size, | |
infer_channel_dimension_format, | |
is_scaled_image, | |
is_valid_image, | |
make_list_of_images, | |
to_numpy_array, | |
valid_images, | |
validate_preprocess_arguments, | |
) | |
from transformers.utils import TensorType, is_vision_available, logging | |
logger = logging.get_logger(__name__) | |
if is_vision_available(): | |
from PIL import Image | |
def make_batched_images(images) -> List[List[ImageInput]]: | |
""" | |
Accepts images in list or nested list format, and makes a list of images for preprocessing. | |
Args: | |
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): | |
The input image. | |
Returns: | |
list: A list of images. | |
""" | |
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]): | |
return [img for img_list in images for img in img_list] | |
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): | |
return images | |
elif is_valid_image(images): | |
return [images] | |
raise ValueError(f"Could not make batched images from {images}") | |
# Copied from transformers.models.llava_next_video.image_processing_llava_next_video.make_batched_videos | |
def make_batched_videos(videos) -> List[VideoInput]: | |
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]): | |
return videos | |
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): | |
if isinstance(videos[0], Image.Image): | |
return [videos] | |
elif len(videos[0].shape) == 4: | |
return [list(video) for video in videos] | |
elif is_valid_image(videos) and len(videos.shape) == 4: | |
return [list(videos)] | |
raise ValueError(f"Could not make batched video from {videos}") | |
def smart_resize( | |
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280 | |
): | |
"""Rescales the image so that the following conditions are met: | |
1. Both dimensions (height and width) are divisible by 'factor'. | |
2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. | |
3. The aspect ratio of the image is maintained as closely as possible. | |
""" | |
if height < factor or width < factor: | |
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}") | |
elif max(height, width) / min(height, width) > 200: | |
raise ValueError( | |
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" | |
) | |
h_bar = round(height / factor) * factor | |
w_bar = round(width / factor) * factor | |
if h_bar * w_bar > max_pixels: | |
beta = math.sqrt((height * width) / max_pixels) | |
h_bar = math.floor(height / beta / factor) * factor | |
w_bar = math.floor(width / beta / factor) * factor | |
elif h_bar * w_bar < min_pixels: | |
beta = math.sqrt(min_pixels / (height * width)) | |
h_bar = math.ceil(height * beta / factor) * factor | |
w_bar = math.ceil(width * beta / factor) * factor | |
return h_bar, w_bar | |
class Qwen2VLImageProcessor(BaseImageProcessor): | |
r""" | |
Constructs a Qwen2-VL image processor that dynamically resizes images based on the original images. | |
Args: | |
do_resize (`bool`, *optional*, defaults to `True`): | |
Whether to resize the image's (height, width) dimensions. | |
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): | |
Resampling filter to use when resizing the image. | |
do_rescale (`bool`, *optional*, defaults to `True`): | |
Whether to rescale the image by the specified scale `rescale_factor`. | |
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): | |
Scale factor to use if rescaling the image. | |
do_normalize (`bool`, *optional*, defaults to `True`): | |
Whether to normalize the image. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): | |
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. | |
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): | |
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. | |
do_convert_rgb (`bool`, *optional*, defaults to `True`): | |
Whether to convert the image to RGB. | |
min_pixels (`int`, *optional*, defaults to `56 * 56`): | |
The min pixels of the image to resize the image. | |
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`): | |
The max pixels of the image to resize the image. | |
patch_size (`int`, *optional*, defaults to 14): | |
The spacial patch size of the vision encoder. | |
temporal_patch_size (`int`, *optional*, defaults to 2): | |
The temporal patch size of the vision encoder. | |
merge_size (`int`, *optional*, defaults to 2): | |
The merge size of the vision encoder to llm encoder. | |
""" | |
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"] | |
def __init__( | |
self, | |
do_resize: bool = True, | |
resample: PILImageResampling = PILImageResampling.BICUBIC, | |
do_rescale: bool = True, | |
rescale_factor: Union[int, float] = 1 / 255, | |
do_normalize: bool = True, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = True, | |
min_pixels: int = 56 * 56, | |
max_pixels: int = 28 * 28 * 1280, | |
patch_size: int = 14, | |
temporal_patch_size: int = 2, | |
merge_size: int = 2, | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
self.do_resize = do_resize | |
self.resample = resample | |
self.do_rescale = do_rescale | |
self.rescale_factor = rescale_factor | |
self.do_normalize = do_normalize | |
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN | |
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD | |
self.min_pixels = min_pixels | |
self.max_pixels = max_pixels | |
self.patch_size = patch_size | |
self.temporal_patch_size = temporal_patch_size | |
self.merge_size = merge_size | |
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels} | |
self.do_convert_rgb = do_convert_rgb | |
def _preprocess( | |
self, | |
images: Union[ImageInput, VideoInput], | |
do_resize: bool = None, | |
resample: PILImageResampling = None, | |
do_rescale: bool = None, | |
rescale_factor: float = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = None, | |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
): | |
""" | |
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. | |
Args: | |
images (`ImageInput`): | |
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`. | |
vision_info (`List[Dict]`, *optional*): | |
Optional list of dictionaries containing additional information about vision inputs. | |
do_resize (`bool`, *optional*, defaults to `self.do_resize`): | |
Whether to resize the image. | |
resample (`PILImageResampling`, *optional*, defaults to `self.resample`): | |
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. | |
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | |
Whether to rescale the image. | |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | |
Scale factor to use if rescaling the image. | |
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | |
Whether to normalize the image. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | |
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | |
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | |
Whether to convert the image to RGB. | |
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): | |
The channel dimension format for the output image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- Unset: Use the channel dimension format of the input image. | |
input_data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format for the input image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | |
""" | |
images = make_list_of_images(images) | |
if do_convert_rgb: | |
images = [convert_to_rgb(image) for image in images] | |
# All transformations expect numpy arrays. | |
images = [to_numpy_array(image) for image in images] | |
if is_scaled_image(images[0]) and do_rescale: | |
logger.warning_once( | |
"It looks like you are trying to rescale already rescaled images. If the input" | |
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." | |
) | |
if input_data_format is None: | |
# We assume that all images have the same channel dimension format. | |
input_data_format = infer_channel_dimension_format(images[0]) | |
height, width = get_image_size(images[0], channel_dim=input_data_format) | |
resized_height, resized_width = height, width | |
processed_images = [] | |
for image in images: | |
if do_resize: | |
resized_height, resized_width = smart_resize( | |
height, | |
width, | |
factor=self.patch_size * self.merge_size, | |
min_pixels=self.min_pixels, | |
max_pixels=self.max_pixels, | |
) | |
image = resize( | |
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format | |
) | |
if do_rescale: | |
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) | |
if do_normalize: | |
image = self.normalize( | |
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format | |
) | |
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) | |
processed_images.append(image) | |
patches = np.array(processed_images) | |
if data_format == ChannelDimension.LAST: | |
patches = patches.transpose(0, 3, 1, 2) | |
if patches.shape[0] == 1: | |
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1)) | |
channel = patches.shape[1] | |
grid_t = patches.shape[0] // self.temporal_patch_size | |
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size | |
patches = patches.reshape( | |
grid_t, | |
self.temporal_patch_size, | |
channel, | |
grid_h // self.merge_size, | |
self.merge_size, | |
self.patch_size, | |
grid_w // self.merge_size, | |
self.merge_size, | |
self.patch_size, | |
) | |
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8) | |
flatten_patches = patches.reshape( | |
grid_t * grid_h * grid_w, channel * self.temporal_patch_size * self.patch_size * self.patch_size | |
) | |
return flatten_patches, (grid_t, grid_h, grid_w) | |
def preprocess( | |
self, | |
images: ImageInput, | |
videos: VideoInput = None, | |
do_resize: bool = None, | |
size: Dict[str, int] = None, | |
resample: PILImageResampling = None, | |
do_rescale: bool = None, | |
rescale_factor: float = None, | |
do_normalize: bool = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
): | |
""" | |
Args: | |
images (`ImageInput`): | |
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | |
passing in images with pixel values between 0 and 1, set `do_rescale=False`. | |
videos (`VideoInput`): | |
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If | |
passing in videos with pixel values between 0 and 1, set `do_rescale=False`. | |
do_resize (`bool`, *optional*, defaults to `self.do_resize`): | |
Whether to resize the image. | |
size (`Dict[str, int]`, *optional*, defaults to `self.size`): | |
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with | |
the longest edge resized to keep the input aspect ratio. | |
resample (`int`, *optional*, defaults to `self.resample`): | |
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only | |
has an effect if `do_resize` is set to `True`. | |
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | |
Whether to rescale the image. | |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | |
Rescale factor to rescale the image by if `do_rescale` is set to `True`. | |
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | |
Whether to normalize the image. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | |
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. | |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | |
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to | |
`True`. | |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | |
Whether to convert the image to RGB. | |
return_tensors (`str` or `TensorType`, *optional*): | |
The type of tensors to return. Can be one of: | |
- Unset: Return a list of `np.ndarray`. | |
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | |
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | |
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | |
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | |
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): | |
The channel dimension format for the output image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- Unset: Use the channel dimension format of the input image. | |
input_data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format for the input image. If unset, the channel dimension format is inferred | |
from the input image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | |
""" | |
do_resize = do_resize if do_resize is not None else self.do_resize | |
size = size if size is not None else self.size | |
resample = resample if resample is not None else self.resample | |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale | |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor | |
do_normalize = do_normalize if do_normalize is not None else self.do_normalize | |
image_mean = image_mean if image_mean is not None else self.image_mean | |
image_std = image_std if image_std is not None else self.image_std | |
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb | |
if images is not None: | |
images = make_batched_images(images) | |
if videos is not None: | |
videos = make_batched_videos(videos) | |
if images is not None and not valid_images(images): | |
raise ValueError( | |
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | |
"torch.Tensor, tf.Tensor or jax.ndarray." | |
) | |
validate_preprocess_arguments( | |
rescale_factor=rescale_factor, | |
do_normalize=do_normalize, | |
image_mean=image_mean, | |
image_std=image_std, | |
do_resize=do_resize, | |
size=size, | |
resample=resample, | |
) | |
if images is not None: | |
pixel_values, vision_grid_thws = [], [] | |
for image in images: | |
patches, image_grid_thw = self._preprocess( | |
image, | |
do_resize=do_resize, | |
resample=resample, | |
do_rescale=do_rescale, | |
rescale_factor=rescale_factor, | |
do_normalize=do_normalize, | |
image_mean=image_mean, | |
image_std=image_std, | |
data_format=data_format, | |
do_convert_rgb=do_convert_rgb, | |
input_data_format=input_data_format, | |
) | |
pixel_values.extend(patches) | |
vision_grid_thws.append(image_grid_thw) | |
pixel_values = np.array(pixel_values) | |
vision_grid_thws = np.array(vision_grid_thws) | |
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws} | |
if videos is not None: | |
pixel_values, vision_grid_thws = [], [] | |
for images in videos: | |
patches, video_grid_thw = self._preprocess( | |
images, | |
do_resize=do_resize, | |
resample=resample, | |
do_rescale=do_rescale, | |
rescale_factor=rescale_factor, | |
do_normalize=do_normalize, | |
image_mean=image_mean, | |
image_std=image_std, | |
data_format=data_format, | |
do_convert_rgb=do_convert_rgb, | |
input_data_format=input_data_format, | |
) | |
pixel_values.extend(patches) | |
vision_grid_thws.append(video_grid_thw) | |
pixel_values = np.array(pixel_values) | |
vision_grid_thws = np.array(vision_grid_thws) | |
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws} | |
return BatchFeature(data=data, tensor_type=return_tensors) | |