DjStompzone commited on
Commit
01abab4
·
verified ·
1 Parent(s): 8c9f766

Add gradio ui

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ from diffusers.utils import load_image
5
+ from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
6
+ from diffusers.models.controlnet_flux import FluxControlNetModel
7
+
8
+ base_model = 'black-forest-labs/FLUX.1-dev'
9
+ controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai'
10
+ controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
11
+ pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
12
+ pipe.to("cuda")
13
+
14
+ def generate_image(prompt, control_image, controlnet_conditioning_scale, num_inference_steps, guidance_scale):
15
+ control_image = load_image(control_image) if isinstance(control_image, str) else control_image
16
+
17
+ result = pipe(
18
+ prompt,
19
+ control_image=control_image,
20
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
21
+ num_inference_steps=num_inference_steps,
22
+ guidance_scale=guidance_scale,
23
+ ).images[0]
24
+
25
+ return result
26
+
27
+ with gr.Blocks() as demo:
28
+ gr.Markdown("# FLUX ControlNet Pipeline Interface")
29
+
30
+ with gr.Row():
31
+ with gr.Column():
32
+ prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
33
+ control_image = gr.Image(source="upload", type="filepath", label="Control Image")
34
+
35
+ controlnet_conditioning_scale = gr.Slider(0.0, 1.0, value=0.6, label="ControlNet Conditioning Scale")
36
+ num_inference_steps = gr.Slider(1, 100, value=28, step=1, label="Number of Inference Steps")
37
+ guidance_scale = gr.Slider(1.0, 10.0, value=3.5, label="Guidance Scale")
38
+
39
+ generate_button = gr.Button("Generate Image")
40
+
41
+ with gr.Column():
42
+ output_image = gr.Image(label="Generated Image")
43
+ generate_button.click(
44
+ generate_image,
45
+ inputs=[prompt, control_image, controlnet_conditioning_scale, num_inference_steps, guidance_scale],
46
+ outputs=output_image
47
+ )
48
+
49
+ demo.launch()