File size: 2,242 Bytes
fec90af e968c69 fec90af fc602df 913d1e8 1fae59e 28c566c 913d1e8 1fae59e ce59ec4 1fae59e 913d1e8 d63f2a7 913d1e8 1fae59e 913d1e8 d63f2a7 bd5fef4 ce59ec4 d63f2a7 1fae59e ce59ec4 c64dfc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
title: README
emoji: π
colorFrom: purple
colorTo: gray
sdk: static
pinned: false
---
Multilingual language models have many deployment challenges.
![Deployment Challenges](DeploymentChallenges.png)
Can we create multilingual models that maintain performance comparable to their corresponding larger models while reducing size, latency and increase inference speeds with huge batch sizes in production?
![MemoryVariations through time](MemoryVariations(Latency).png)
# Techniques:
- Pruning
- Unstructured Pruning
- Structured Pruning
- Semi-Structured Pruning
- Methods Used
- SparseGPT | [GitHub](https://github.com/VishnuVardhanSaiLanka/sparsegpt/tree/aya)
- ShortGPT | [KLDBasedPruning & Perplexity Sensivities](https://github.com/rsk2327/DistAya/tree/main)
- Knowledge Distillation
- Hidden State-Based Distillation ~ [DistillKit](https://arcee-ai-distillkit.my.canva.site/) | [GitHub](https://github.com/ShayekhBinIslam/DistillKit)
- Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling
- On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes
- Minitron: Compact Language models via Pruning & Knowledge Distillation
- DistiLLM: Towards Streamlined Distillation for Large Language Models
- Quantization
- Quantization Aware Training (QAT)
- Post Training Quantization (PTQ)
- KV Cache Quantization
- Weight & Activation Quantization
- Low-Rank Factorization
- Fine-Tuning | [GitHub](https://github.com/rsk2327/DistAya/tree/track/fine-tuning)
![Techniques](Techniques.png)
# Datasets:
Initial 7 datasets unified, having 6.62M rows which includes the following:
- Bangla_Alpaca_Orca : Bangle
- Urdu_Instruct_News_Article_Generation: Urdu
- Urdu_Instruct_News_Headline_Generation: Urdu
- Urdu_Instruct_News_Category_Classification: Urdu
- cidar: Arabic
- Six_Millions_Instruction_Dataset_For_Arabic_Llm_Ft: Arabic
- instructv3: English
## Get in touch with the team:
- Mayank Bhaskar -> [email protected]
- Ahmad Anis -> [email protected]
- Drishti Sharma -> [email protected]
- Vishnu Vardhan -> [email protected]
- Yaya -> [email protected]
- Shayekh Bin Islam -> [email protected] |