File size: 2,242 Bytes
fec90af
 
e968c69
fec90af
 
 
 
 
 
fc602df
913d1e8
1fae59e
28c566c
913d1e8
1fae59e
ce59ec4
1fae59e
913d1e8
 
 
 
 
 
 
 
 
 
 
 
d63f2a7
 
913d1e8
1fae59e
913d1e8
 
 
 
 
 
 
d63f2a7
 
bd5fef4
 
 
ce59ec4
d63f2a7
 
 
 
 
 
 
 
1fae59e
ce59ec4
c64dfc8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
title: README
emoji: πŸš€
colorFrom: purple
colorTo: gray
sdk: static
pinned: false
---

Multilingual language models have many deployment challenges.
![Deployment Challenges](DeploymentChallenges.png)

Can we create multilingual models that maintain performance comparable to their corresponding larger models while reducing size, latency and increase inference speeds with huge batch sizes in production?
![MemoryVariations through time](MemoryVariations(Latency).png)

# Techniques:
- Pruning
  - Unstructured Pruning
  - Structured Pruning
  - Semi-Structured Pruning

  - Methods Used
    - SparseGPT | [GitHub](https://github.com/VishnuVardhanSaiLanka/sparsegpt/tree/aya)
    - ShortGPT | [KLDBasedPruning & Perplexity Sensivities](https://github.com/rsk2327/DistAya/tree/main)

- Knowledge Distillation 
  - Hidden State-Based Distillation ~ [DistillKit](https://arcee-ai-distillkit.my.canva.site/) | [GitHub](https://github.com/ShayekhBinIslam/DistillKit)
  - Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling
  - On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes
  - Minitron: Compact Language models via Pruning & Knowledge Distillation
  - DistiLLM: Towards Streamlined Distillation for Large Language Models

- Quantization
  - Quantization Aware Training (QAT)
  - Post Training Quantization (PTQ)
    - KV Cache Quantization
    - Weight & Activation Quantization

- Low-Rank Factorization

- Fine-Tuning | [GitHub](https://github.com/rsk2327/DistAya/tree/track/fine-tuning)

![Techniques](Techniques.png)


# Datasets:
Initial 7 datasets unified, having 6.62M rows which includes the following:
- Bangla_Alpaca_Orca : Bangle
- Urdu_Instruct_News_Article_Generation: Urdu
- Urdu_Instruct_News_Headline_Generation: Urdu
- Urdu_Instruct_News_Category_Classification: Urdu
- cidar: Arabic
- Six_Millions_Instruction_Dataset_For_Arabic_Llm_Ft: Arabic
- instructv3: English

## Get in touch with the team:
- Mayank Bhaskar -> [email protected]
- Ahmad Anis -> [email protected]
- Drishti Sharma -> [email protected]
- Vishnu Vardhan -> [email protected]
- Yaya -> [email protected]
- Shayekh Bin Islam -> [email protected]