pllava-7b-demo / tasks /eval /videoqabench /pllava_eval_videoqabench.py
cathyxl
added
f239efc
import functools
import itertools
import logging
from tqdm import tqdm
from PIL import Image
from multiprocessing import Pool
from argparse import ArgumentParser
import multiprocessing as mp
import numpy as np
import torch
import torchvision
import transformers
from decord import VideoReader, cpu
from tasks.eval.model_utils import load_pllava, pllava_answer
from tasks.eval.eval_utils import conv_templates
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
IMAGE_TOKEN='<image>'
from tasks.eval.videoqabench import (
VideoQABenchDataset,
load_results,
save_results,
)
RESOLUTION = 672 #
VIDEOQA_DATASETS=["MSVD_QA","MSRVTT_QA", "ActivityNet","TGIF_QA"]
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
required=True,
default='llava-hf/llava-1.5-7b-hf'
)
parser.add_argument(
"--save_path",
type=str,
required=True,
default='"./test_results/test_llava_mvbench"'
)
parser.add_argument(
"--num_frames",
type=int,
required=True,
default=4,
)
parser.add_argument(
"--use_lora",
action='store_true'
)
parser.add_argument(
"--lora_alpha",
type=int,
required=False,
default=32,
)
parser.add_argument(
"--max_new_tokens",
type=int,
required=False,
default=100,
)
parser.add_argument(
"--weight_dir",
type=str,
required=False,
default=None,
)
parser.add_argument(
"--eval_model",
type=str,
required=False,
default="gpt-3.5-turbo-0125",
)
parser.add_argument(
'--test_ratio',
type=float,
required=False,
default=1
)
parser.add_argument(
"--conv_mode",
type=str,
required=False,
default='eval_videoqabench',
)
parser.add_argument(
"--test_datasets",
type=str,
required=False,
default='MSVD_QA',
)
args = parser.parse_args()
return args
def load_model_and_dataset(rank, world_size, pretrained_model_name_or_path, num_frames, use_lora, lora_alpha, weight_dir, test_ratio, test_datasets):
# remind that, once the model goes larger (30B+) may cause the memory to be heavily used up. Even Tearing Nodes.
model, processor = load_pllava(pretrained_model_name_or_path, num_frames=num_frames, use_lora=use_lora, lora_alpha=lora_alpha, weight_dir=weight_dir)
logger.info('done loading llava')
# position embedding
model = model.to(torch.device(rank))
model = model.eval()
dataset = VideoQABenchDataset(test_ratio=test_ratio, test_datasets=test_datasets, num_segments=num_frames)
dataset.set_rank_and_world_size(rank, world_size)
return model, processor, dataset
def infer_videoqabench(
model,
processor,
data_sample,
conv_mode,
pre_query_prompt=None, # add in the head of question
post_query_prompt=None, # add in the end of question
answer_prompt=None, # add in the begining of answer
return_prompt=None, # add in the begining of return message
print_res=False,
max_new_tokens=100,
):
video_list = data_sample["video_pils"]
conv = conv_templates[conv_mode].copy()
pre_query_prompt=conv.pre_query_prompt
post_query_prompt=conv.post_query_prompt
answer_prompt=conv.answer_prompt
conv.user_query(data_sample['question'], pre_query_prompt, post_query_prompt, is_mm=True)
if answer_prompt is not None:
conv.assistant_response(answer_prompt)
llm_message, conv = pllava_answer(
conv=conv,
model=model,
processor=processor,
img_list=video_list,
max_new_tokens=max_new_tokens,
do_sample=False,
print_res=print_res,
)
if answer_prompt is not None:
llm_message = ''.join(llm_message.split(answer_prompt.strip("\n"))[1:]).strip()
if return_prompt is not None:
llm_message = return_prompt + llm_message
return llm_message
def single_test(model, processor, vid_path, num_frames=4, conv_mode="plain"):
def get_index(num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(video_path, num_segments=8, return_msg=False, num_frames=4, resolution=336):
transforms = torchvision.transforms.Resize(size=resolution)
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
num_frames = len(vr)
frame_indices = get_index(num_frames, num_segments)
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(transforms(img))
if return_msg:
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
# " " should be added in the start and end
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
return images_group, msg
else:
return images_group
if num_frames != 0:
vid, msg = load_video(vid_path, num_segments=num_frames, return_msg=True, resolution=RESOLUTION)
else:
vid, msg = None, 'num_frames is 0, not inputing image'
img_list = vid
conv = conv_templates[conv_mode].copy()
conv.user_query("Describe the video in details.", is_mm=True)
llm_response, conv = pllava_answer(conv=conv, model=model, processor=processor, do_sample=False, img_list=img_list, max_new_tokens=256, print_res=True)
def run(rank, args, world_size):
if rank != 0:
transformers.utils.logging.set_verbosity_error()
logger.setLevel(transformers.logging.ERROR)
print_res = True
conv_mode= args.conv_mode
pre_query_prompt = None
post_query_prompt = None
# pre_query_prompt = "Answer the question with a single word or phrase."
logger.info(f'loading model and constructing dataset to gpu {rank}...')
test_datasets = [x for x in args.test_datasets.split("-") if x in VIDEOQA_DATASETS]
assert len(test_datasets)>=1
model, processor, dataset = load_model_and_dataset(rank,
world_size,
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
num_frames=args.num_frames,
use_lora=args.use_lora,
lora_alpha=args.lora_alpha,
weight_dir=args.weight_dir,
test_ratio=args.test_ratio,
test_datasets=test_datasets)
logger.info(f'done model and dataset...')
logger.info('constructing dataset...')
logger.info('single test...')
vid_path = "./example/yoga.mp4"
# vid_path = "./example/jesse_dance.mp4"
if rank == 0:
single_test(model, processor, vid_path, num_frames=args.num_frames, conv_mode=args.conv_mode)
logger.info('single test done...')
tbar = tqdm(total=len(dataset))
logger.info('single test...')
result_list = []
done_count = 0
for example in dataset:
task_type = example['task_type']
gt = example['answer']
if task_type in dataset.data_list_info:
pred = infer_videoqabench(
model,
processor,
example,
conv_mode=conv_mode,
pre_query_prompt=pre_query_prompt,
post_query_prompt=post_query_prompt,
print_res=print_res,
max_new_tokens=args.max_new_tokens,
)
infos = {
'question': example['question'],
'video_path': example['video_path']
}
res = {
'pred': pred,
'gt': gt,
'task_type': task_type,
**infos
}
else:
raise NotImplementedError(f'not implemented task type {task_type}')
# res = chatgpt_eval(res)
result_list.append(res)
if rank == 0:
tbar.update(len(result_list) - done_count, )
tbar.set_description_str(
f"One Chunk--Task Type: {task_type}-"
f"gt: {gt[:min(15, len(gt))]}......--pred: {pred[:min(15, len(gt))]}......"
)
done_count = len(result_list)
return result_list
def main():
multiprocess=True
mp.set_start_method('spawn')
args = parse_args()
save_path = args.save_path
eval_model = args.eval_model
logger.info(f'trying loading results from {save_path}')
result_list = load_results(save_path)
if result_list is None:
if multiprocess:
logger.info(f'started benchmarking, saving to: {save_path}')
n_gpus = torch.cuda.device_count()
# assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}"
world_size = n_gpus
with Pool(world_size) as pool:
func = functools.partial(run, args=args, world_size=world_size)
# func = functools.partial(run, world_size=world_size, model=model, dataset=dataset, result_list=[], acc_dict={})
result_lists = pool.map(func, range(world_size))
logger.info('finished running')
result_list = [ res for res in itertools.chain(*result_lists)]
else:
result_list = run(0, world_size=1, args=args) # debug
else:
logger.info(f'loaded results from {save_path}')
save_results(result_list, save_path, model=eval_model)
if __name__ == "__main__":
main()