File size: 24,267 Bytes
f239efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import datetime
import gc
import time
import os
import os.path as osp
import re
import itertools
import functools
import random
import math
import shutil
from typing import Optional, Union

import torch
import numpy as np
from safetensors import safe_open

import logging
from accelerate.logging import get_logger
from accelerate import Accelerator, DistributedType
from accelerate.utils import set_seed
from peft import get_peft_model, LoraConfig, TaskType


from dataset import create_dataset, create_loader
from tasks.shared_utils import get_media_types
from utils.basic_utils import (MetricLogger, SmoothedValue, setup_seed)
from utils.config_utils import setup_main
from transformers.utils import TensorType

from tasks.shared_utils import create_optimizer, create_scheduler
import copy
from transformers import  (
    DataCollatorWithPadding,
    get_scheduler,
    AutoModel,
    AutoModelForCausalLM
    )
from models.pllava import PllavaConfig, PllavaForConditionalGeneration, PllavaProcessor

# logger = logging.getLogger(__name__)
IMAGE_TOKEN='<image>'

logger = get_logger(__name__)

def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                print(name, 'no ignore status')
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


def get_state_maybe_zero_3(named_params, keys_to_match=["lora_","multi_modal_projector"]):
    to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
    to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
    return to_return

def setup_dataloaders(config, mode="pt", collate_fn=None):
    # train datasets, create a list of data loaders
    logger.info(f"Creating dataset for {mode}")
    train_datasets = create_dataset(f"{mode}_train", config)

    media_types = get_media_types(train_datasets)
    samplers = [None] * len(media_types)

    train_loaders = create_loader(
        train_datasets,
        samplers,
        batch_size=[config.inputs.batch_size[k] for k in media_types],
        num_workers=[config.num_workers] * len(media_types),
        is_trains=[True] * len(media_types),
        collate_fns=[collate_fn] * len(media_types),
    )  # [0]

    return train_loaders, media_types


def setup_model(
    config, find_unused_parameters=False
):
    if config.model.torch_dtype in ('bfloat16', 'float16', 'float32'):
        torch_dtype = eval(f'torch.{config.model.torch_dtype}')
    else:
        torch_dtype = config.model.torch_dtype
    logger.info("Creating model")
    
    processor = PllavaProcessor.from_pretrained(config.model.repo_id, 
                                               padding_side='right', 
                                               center_pad=config.preprocess.center_pad,
                                               )
    

    model_config = PllavaConfig.from_pretrained(config.model.repo_id,
                                               torch_dtype=torch_dtype, 
                                               num_frames=config.model.num_frames,
                                               pooling_method=config.model.pooling_method,
                                               image_token_index=config.preprocess.image_token_index,
                                               frame_shape=config.model.frame_shape,
                                               pooling_shape=config.model.pooling_shape,
                                               use_pooling=config.model.use_pooling,
                                               gradient_checkpointing=config.gradient_checkpointing,
                                               )
    print("====>gradient_checkpointing",model_config.gradient_checkpointing)

    model = PllavaForConditionalGeneration.from_pretrained(config.model.repo_id, config=model_config, torch_dtype=torch_dtype)

    if config.model.load_from_origin:
        with torch.no_grad():
            lm_model = AutoModelForCausalLM.from_pretrained(config.model.origin_llm, torch_dtype=torch_dtype, device_map="cpu",)
        with torch.no_grad():
            clip = AutoModel.from_pretrained(config.model.origin_vision, torch_dtype=torch_dtype, device_map="cpu",)
        msg = model.vision_tower.load_state_dict(clip.state_dict(), strict=False)
        # print(msg)
        msg = model.language_model.load_state_dict(lm_model.state_dict(), strict=False)
        print(msg)

        
    if config.model.freeze_lm:
        logger.info("freezing parameters in model.language_model")
        for p in model.language_model.parameters():
            p.requires_grad = False

    if config.model.freeze_projector:
        logger.info("freezing parameters in model.multi_modal_projector")
        for p in model.multi_modal_projector.parameters():
            p.requires_grad = False

    if config.model.freeze_vision_tower:
        logger.info("freezing parameters in model.vision_tower")
        for p in model.vision_tower.parameters():
            p.requires_grad = False

    if config.model.use_lora:
        logger.info("getting LoRA Language Model")
        kwargs = {}
        if config.model.lora_target_modules is not None and len(config.model.lora_target_modules) > 0:
            kwargs.update({"target_modules": config.model.lora_target_modules})
        peft_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM, inference_mode=False, 
            r=config.model.lora_r, lora_alpha=config.model.lora_alpha, lora_dropout=config.model.lora_dropout,
            **kwargs
        )
        model.language_model = get_peft_model(model.language_model, peft_config)
        model.language_model.print_trainable_parameters()

    if config.model.pretrained_path is not None and not config.deepspeed:
        logger.info("======> loading pretrained weights from " + str(config.model.pretrained_path))
        state_dict = {}
        save_fnames = os.listdir(config.model.pretrained_path)
        if "model.safetensors" in save_fnames:
            print("Loading weight from", config.model.pretrained_path, "model.safetensors")
            with safe_open(f"{config.model.pretrained_path}/model.safetensors", framework="pt", device="cpu") as f:
                for k in f.keys():
                    state_dict[k] = f.get_tensor(k)
        else:
            print("Loading weight from", config.model.pretrained_path)
            for fn in save_fnames:
                if fn.startswith('model-0000'):
                    with safe_open(f"{config.model.pretrained_path}/{fn}", framework="pt", device="cpu") as f:
                        for k in f.keys():
                            state_dict[k] = f.get_tensor(k)
        
        if 'model' in state_dict.keys():
            msg = model.load_state_dict(state_dict['model'], strict=False)
        else:
            msg = model.load_state_dict(state_dict, strict=False)
        logger.info(msg)
        logger.info("=====> Finish loading")

    return model, processor

def setup_optimizer_and_scheduler(config, model):
    optimizer = create_optimizer(config.optimizer, model) # do you want to filter bias and bn?
    if config.scheduler.is_videochat2_custom:
        scheduler = create_scheduler(config.scheduler, optimizer)
    else:
        scheduler=None

    return optimizer, scheduler

class RandomMappingIterator():
    # a random iter through the multiple mapping style dataloaders
    def __init__(self, train_loaders, media_types, resume_step=0):
        self.train_loaders = train_loaders
        self.media_types = media_types
        self.total_num_samples = sum(len(train_loader) for train_loader in self.train_loaders)
        self.weights = [len(loader) / self.total_num_samples for loader in train_loaders]
        self.resume_step = resume_step
        if resume_step != 0:
            self.total_num_samples= self.total_num_samples-resume_step
            # remove corresponding iters from each loader


    def __iter__(self):
        train_loaders = self.train_loaders
        iters = [iter(train_loader) for train_loader in train_loaders]
        
        media_types = copy.deepcopy(self.media_types)
        weights = copy.deepcopy(self.weights)
        while len(iters) > 0:
            index = np.random.choice(list(range(len(iters))), p=weights, replace=True)
            try:
                batch = next(iters[index])
            except StopIteration as e:
                iters.pop(index)
                media_types.pop(index)
                weights.pop(index)
                total = sum(weights)
                weights = [w/total for w in weights]
                continue

            media_type = media_types[index]
            yield media_type, batch

    def __len__(self):
        return self.total_num_samples

def split_and_record_separators(input_string, separators) -> list:
    texts = [input_string]
    for sep in separators:
        new_texts = []
        for text in texts:
            if sep not in text:
                new_texts.append(text)
            else:
                split_strings = text.split(sep)
                joint_strings = [t for pair in zip(split_strings[:-1], itertools.repeat(sep)) for t in pair ] + split_strings[-1:]
                new_texts.extend(joint_strings)
        texts = new_texts
    return texts

def preprocess(
    batch,
    args,
    processor,
    collate_fn,
    dtype=torch.bfloat16,
    return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
):
    tokenizer = processor.tokenizer
    # tokenization for training
    max_length = args.max_txt_l
    input_list, images = [], []
    for sample in batch:
        image, tex, instruction, index = sample  # (nframe, 3, h, w), (0-255)
        num_img = image.shape[0]
        tex = tex.replace(args.dataset_video_placeholder, IMAGE_TOKEN).replace(args.dataset_image_placeholder, IMAGE_TOKEN)
        seps = [role for role in args.roles]
        segs = split_and_record_separators(tex, seps)
        input_ids, labels, attention_mask = [], [], []

        for i, seg in enumerate(segs):
            seg_ignore = False if seg == seps[1] else \
                        (True if  i == 0 or seg in seps else seg_ignore) # not ignoring assistant, changing in sepecific situations
            current_ignore = True if seg in seps else seg_ignore # serve for only this one iteration
            seg_input_ids = tokenizer.encode(seg, add_special_tokens=True if i==0 else False) # only add bos token
            seg_labels = [args.ignore_index] * len(seg_input_ids) if current_ignore else seg_input_ids
            seg_attention_mask = [1] * len(seg_input_ids) # do attend
            input_ids.extend(seg_input_ids)
            labels.extend(seg_labels)
            attention_mask.extend(seg_attention_mask)

        pad_length = max_length - len(input_ids)
        labels = labels[:max_length]
        attention_mask = attention_mask[:max_length]
        input_ids=input_ids[:max_length]

        labels = labels + [args.ignore_index] * pad_length # padding doesn't take care of labels. do the padding here
        input_ids = input_ids + [tokenizer.pad_token_id] * pad_length
        attention_mask =  attention_mask + [0]*pad_length
        sample_input = {
            'input_ids': input_ids,
            'labels': labels,
            'attention_mask': attention_mask,
        }
        input_list.append(sample_input)
        images.append(image if image.ndim==4 else image.unsqueeze(0)) # made 4 dim for image, remain 4 dim for video
    
    inputs = collate_fn(input_list)
    
    # interpolate frames if the total frame is smaller than needed    
    for i, video in enumerate(images):
        if video.shape[0] < args.num_frames:
            multiplier = int(args.num_frames/video.shape[0]) + 1
            video = video.repeat_interleave(multiplier, dim=0)[:args.num_frames]
            images[i] = video
            assert video.shape[0] == args.num_frames
    if args.clip_transform:
        multimodal_features = processor(images=images)
        inputs.update(**multimodal_features)
    else:
        inputs["pixel_values"] = torch.concat(images) # already processed to features in dataset get item


    return inputs

def main(config):
    accelerator_log_kwargs=dict(
        log_with=config.report_to,
        project_dir=config.output_dir
    )

    accelerator = Accelerator(
        gradient_accumulation_steps=config.gradient_accumulation_steps,
        **accelerator_log_kwargs
    )
    logger.info(f"train_file: {config.train_file}")
    model, processor = setup_model(
        config,
        find_unused_parameters=True,
    )
    if accelerator.is_main_process:
        logger.setLevel(logging.INFO)
    else:
        logger.setLevel(logging.WARNING)
    
    collate_fn = DataCollatorWithPadding(tokenizer=processor.tokenizer, padding='max_length', max_length=config.max_txt_l, return_tensors='pt',)
    collate_fn = functools.partial(preprocess, args=config.preprocess, processor=processor, collate_fn=collate_fn)
    train_loaders, train_media_types = setup_dataloaders(config, mode=config.mode, collate_fn=collate_fn)
    num_steps_per_epoch = math.ceil(sum(len(d) for d in train_loaders) / config.gradient_accumulation_steps)
    # load optimizer and custom scheduler
    config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
    config.scheduler.num_warmup_steps = math.ceil(config.scheduler.num_training_steps * config.scheduler.warmup_ratio)
    optimizer, lr_scheduler = setup_optimizer_and_scheduler(config, model) 
    # if not set customized scheduler, default hf scheduler
    overrode_max_train_steps = False
    if config.max_train_steps is None:
        config.max_train_steps = config.scheduler.epochs * num_steps_per_epoch
        overrode_max_train_steps = True
    if lr_scheduler is None:
        lr_scheduler = get_scheduler(
            name=config.scheduler.sched,
            optimizer=optimizer,
            num_warmup_steps=config.scheduler.num_warmup_steps,
            num_training_steps=config.max_train_steps
            if overrode_max_train_steps
            else config.max_train_steps * accelerator.num_processes,
        )
    model, optimizer, lr_scheduler, *train_loaders = accelerator.prepare(
        model, optimizer, lr_scheduler, *train_loaders
    )

    if hasattr(config, 'seed'):
        set_seed(config.seed)
    
    experiment_config = { # include all the important hyperparam
        'num_frames': config.num_frames, 
        'max_txt_l': config.max_txt_l, 
        'batch_size': config.batch_size, 
    }

    model.train()

    start_epoch = 0
    num_batches = sum(len(loader) for loader in train_loaders)
    global_step = start_epoch * num_batches  # the steps before divided by accumulation
    if osp.exists(config.output_dir):
        subfolders = os.listdir(config.output_dir)
        sample_saving = False
        for subfolder in subfolders:
            if subfolder.endswith("M"):
                sample_saving = True
        if sample_saving:
            ckpt_paths = [subfolder for subfolder in subfolders if re.match(r'ckpt_resume_[\d.]+M$', subfolder) is not None]
            ckpt_iters = [float(re.findall(r'[\d.]+', x)[0]) for x in ckpt_paths]
        else:
            ckpt_paths = [subfolder for subfolder in subfolders if re.match("ckpt_[^\d]+", subfolder) is not None]
            ckpt_iters = [int(s.split(re.match("ckpt_[^\d]+", s).group())[-1]) for s in ckpt_paths]

    
        resume_cur_epoch_step=0
        if len(ckpt_iters) > 0:
            resume_iter = max(ckpt_iters)
            ckpt_path = osp.join(config.output_dir, ckpt_paths[ckpt_iters.index(resume_iter)])
            accelerator.print(f"Resumed from checkpoint: {ckpt_path}")
            accelerator.load_state(ckpt_path)
            if sample_saving:
                resume_iter = int(resume_iter*1e6/(config.batch_size*accelerator.state.num_processes))

            if "epoch" in ckpt_path:
                start_epoch = int(resume_iter) + 1
                resume_cur_epoch_step = 0
                global_step = start_epoch * num_batches
            else:
                # need to multiply `gradient_accumulation_steps` to reflect real steps
                # num_finish_smaple = int(max_ckpt_num) * config.gradient_accumulation_steps
                start_epoch = resume_iter // num_batches
                global_step = resume_iter 
                resume_cur_epoch_step = resume_iter - start_epoch * num_batches
            accelerator.print(f"Resume from epoch {start_epoch}, steps{resume_cur_epoch_step}")
            
    

    # TensorBoard cannot log Enums, need the raw value
    accelerator.init_trackers("train_pllava_nframe", experiment_config)
    start_time = time.time()
    


    logger.info(f"Start training {str(start_time)}, from start_epoch-{start_epoch}, step-{resume_cur_epoch_step}")

    # skip the first `n` batches in the dataloader when resuming from a checkpoint
    active_train_loaders = train_loaders 
    if resume_cur_epoch_step > 0:
        active_train_loaders = []
        total_dta_num = sum(len(train_loader) for train_loader in train_loaders)
        for train_loader in train_loaders:
            skip_batch_num = int((resume_cur_epoch_step/total_dta_num)*len(train_loader))
            skipped_train_loader = accelerator.skip_first_batches(train_loader, num_batches=skip_batch_num)
            active_train_loaders.append(skipped_train_loader)
    
    media_types = get_media_types(active_train_loaders)
    train_loader = RandomMappingIterator(active_train_loaders, media_types)

    for epoch in range(start_epoch, config.scheduler.epochs):  
        if not config.evaluate:
            gc.collect()
            torch.cuda.empty_cache()
            metric_logger = MetricLogger(delimiter="  ")
            loss_names = ["loss"]
            for name in loss_names:
                for m in media_types:
                    metric_logger.add_meter(
                        f"{m}-{name}", SmoothedValue(window=config.metric_window_size, fmt="{value:.4f}")
                    )

            header = f"Train Epoch: [{epoch}]"
            log_freq = config.log_freq

            iterator = metric_logger.log_every(train_loader, log_freq, header)
            mini_batch_losses = []

            for i, (media_type, inputs) in enumerate(iterator): # video/image, conversation, instruction, index
                    
                with accelerator.accumulate(model):
                    
                    inputs['media_type'] = media_type
                    response = model(**inputs)
                    loss = response.loss
                    mini_batch_losses.append(loss.detach().item())
                    optimizer.zero_grad()
                    accelerator.backward(loss)
                    if config.optimizer.max_grad_norm > 0:
                        if accelerator.sync_gradients:
                            accelerator.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
                    optimizer.step()
                    lr_scheduler.step()
                # # logging
                for name in loss_names:
                    value = loss
                    value = value if isinstance(value, float) else value.item()
                    metric_logger.update(**{f"{media_type}-{name}": value})
                global_step += 1
                resume_num_samples = global_step * config.batch_size * accelerator.state.num_processes/1e6

                # save small global step checkpoint in case of breakdown
                if global_step % config.ckpt_steps == 0:
                    accelerator.save_state(output_dir=osp.join(config.output_dir, f"ckpt_resume_{resume_num_samples:.4f}M"))
                    if accelerator.is_main_process:
                        for fn in os.listdir(config.output_dir):
                            if "resume" in fn and fn != f"ckpt_resume_{resume_num_samples:.4f}M":
                                shutil.rmtree(osp.join(config.output_dir, fn))
                
                if global_step % config.save_steps == 0:
                    logger.info(f"global_step {global_step}")
                    with torch.no_grad():
                        accelerator.wait_for_everyone()
                        unwrapped_model = accelerator.unwrap_model(model)
                        if not config.deepspeed:
                            save_state_dict = {k:v for k,v in accelerator.get_state_dict(model).items() if "lora_" in k or "multi_modal_projector" in k}
                        else:
                            save_state_dict = accelerator.get_state_dict(model)
                        unwrapped_model.save_pretrained(osp.join(config.output_dir, f"pretrained_step{resume_num_samples:.4f}M"),
                                            is_main_process=accelerator.is_main_process,
                                            save_function=accelerator.save,
                                            state_dict=save_state_dict)
                        processor.save_pretrained(osp.join(config.output_dir, f"pretrained_step{resume_num_samples:.4f}M"))

                if global_step % log_freq == 0:
                    logs = metric_logger.get_global_avg_dict()
                    logs.update({
                        "step_loss_no_smoothing": accelerator.gather_for_metrics(loss).mean().item(),
                        "epoch": epoch,
                        "step": global_step,
                        "lr": lr_scheduler.get_last_lr()[0],
                    })
                    accelerator.log(logs, step=global_step,)
                    if accelerator.sync_gradients:
                        mini_batch_loss = torch.tensor(mini_batch_losses, device='cuda')
                        accelerator.log({"mini_batch_loss": accelerator.gather_for_metrics(mini_batch_loss).mean().item()},
                                    step=global_step)
                        mini_batch_losses = []
                    

                if config.debug and global_step % 20 == 0:
                    logger.info("debug mode, break training loop")
                    break

                if config.debug and global_step % (2 * log_freq + 3) == 0:
                    logger.info("debug mode, break training loop")
                    break

            # gather the stats from all processes
            metric_logger.synchronize_between_processes()
            logger.info(f"Averaged stats: {metric_logger.global_avg()}")
        logger.info(f"Epoch {epoch}")
        with torch.no_grad():
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            if not config.deepspeed:
                save_state_dict = {k:v for k,v in accelerator.get_state_dict(model).items() if "lora_" in k or "multi_modal_projector" in k}
            else:
                save_state_dict = accelerator.get_state_dict(model)
            unwrapped_model.save_pretrained(osp.join(config.output_dir, f"pretrained_epoch{epoch:02d}"),
                                            is_main_process=accelerator.is_main_process,
                                            save_function=accelerator.save,
                                            state_dict=save_state_dict)
            processor.save_pretrained(osp.join(config.output_dir, f"pretrained_step{epoch:02d}"))
            accelerator.save_state(output_dir=osp.join(config.output_dir, f"ckpt_epoch{epoch:02d}"))


        if config.evaluate:
            break

    accelerator.end_training()
    accelerator.wait_for_everyone()

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logger.info(f"Training time {total_time_str}")
    logger.info(f"Checkpoints and Logs saved at {config.output_dir}")



if __name__ == "__main__":
    cfg = setup_main()
    print(cfg)
    main(cfg)