Spaces:
Runtime error
Runtime error
File size: 20,585 Bytes
f239efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import copy
import itertools
import re
import os
import json
from enum import auto, Enum
import dataclasses
from typing import Any, List
from PIL import Image
import cv2
import imageio
import numpy as np
import torch
from torch.utils.data import Dataset
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from moviepy.editor import VideoFileClip
from decord import VideoReader, cpu # This is Terrible, if you have this line of import in front of torch, will cause model.to(device) to hang
from transformers import StoppingCriteria, StoppingCriteriaList
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from utils.easydict import EasyDict
IMAGE_TOKEN = "<image>"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
MPT = auto()
class MultiModalConvStyle(Enum):
"""Different separator style."""
MM_ALONE = 'mm_alone'
MM_INTERLEAF = 'mm_inferleaf'
def dump_json(obj_serializable ,save_dir_path, json_file_name):
os.makedirs(save_dir_path, exist_ok=True)
save_path = os.path.join(save_dir_path, json_file_name)
with open(save_path, 'w', encoding='utf-8') as f:
json.dump(obj_serializable, f, indent=4, ensure_ascii=False, )
def load_json(load_dir_path, json_file_name):
load_path = os.path.join(load_dir_path, json_file_name)
if not os.path.exists(load_path):
return None
with open(load_path, 'r', encoding='utf-8') as f:
obj_serializable = json.load(f)
return obj_serializable
@dataclasses.dataclass
class Conversation(EasyDict):
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
sep: List[str]
mm_token: str
mm_style: MultiModalConvStyle = MultiModalConvStyle.MM_INTERLEAF
pre_query_prompt: str=None
post_query_prompt: str=None
answer_prompt: str=None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if isinstance(self.sep, str):
self.sep = [self.sep for _ in self.roles]
def get_prompt(self):
sep = [self.sep for _ in self.roles] if isinstance(self.sep, str) else self.sep # if only one sep given, then both sep are the sames
sep = dict(zip(self.roles, sep))
ret = self.system + sep[self.roles[0]] if self.system != "" else ""
for i, (role, message) in enumerate(self.messages):
# if is last msg(the prompt for assistant), if answer prompt exists, no sep added
if i+1 == len(self.messages):
if role != self.roles[-1]: # last role is not the model
ret += role + message + sep[role] + self.roles[-1]
else:
ret += role + message
else:
ret += role + message + sep[role]
return ret
# def get_prompt_multichoice(self):
# pass
def user_query(self, query=None, pre_query_prompt=None, post_query_prompt=None, is_mm=False, num_mm_token=1):
if post_query_prompt is not None:
query = f"{query} {post_query_prompt}"
if pre_query_prompt is not None:
query = f"{pre_query_prompt} {query}"
role = self.roles[0]
# TODO: remove the num_mm_token and hack the self.mm_token outside
if is_mm:
mm_str = num_mm_token*self.mm_token[:-1] + self.mm_token[-1]
if self.mm_style == MultiModalConvStyle.MM_ALONE:
self._append_message(role, mm_str)
elif self.mm_style == MultiModalConvStyle.MM_INTERLEAF:
if self.mm_token not in query:
query = f'{mm_str} {query}'
self._append_message(role, query)
def assistant_response(self, response, pre_query_prompt=None, post_query_prompt=None):
if post_query_prompt is not None:
response = f"{response} {post_query_prompt}"
if pre_query_prompt is not None:
response = f"{post_query_prompt} {response}"
role = self.roles[1]
self._append_message(role, response)
def _append_message(self, role, message):
message = '' if message is None else message
self.messages.append([role, message])
def copy(self):
return copy.deepcopy(self)
conv_video_chatgpt_v1 = Conversation(
system="You are Video-ChatGPT, a large vision-language assistant. "
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language."
"Follow the instructions carefully and explain your answers in detail based on the provided video.",
roles=("USER:", "ASSISTANT:"),
messages=[],
sep=[" ","</s>"],
mm_token='<image>',
mm_style=MultiModalConvStyle.MM_INTERLEAF,
)
conv_plain_v1 = Conversation(
system="",
roles=("USER:", "ASSISTANT:"),
messages=[],
sep=(" ", "</s>"),
mm_token='<image>'
)
# Attention to the roles[0] "USER: " has a space!
conv_eval_vcg = Conversation(
system="You are Video-ChatGPT, a large vision-language assistant. "
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language."
"Follow the instructions carefully and explain your answers in detail based on the provided video.",
roles=("USER: ", "ASSISTANT:"),
messages=[],
sep=[" ","</s>"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_ALONE,
)
conv_eval_vcg_llavanext = Conversation(
system="You are Video-ChatGPT, a large vision-language assistant. "
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language."
"Follow the instructions carefully and explain your answers in detail based on the provided video.",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
messages=[],
sep=["<|im_end|>\n","<|im_end|>\n"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_ALONE,
)
SYSTEM_MVBENCH="Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on your observations, select the best option that accurately addresses the question.\n"
conv_eval_mvbench = Conversation(
system=SYSTEM_MVBENCH,
roles=("USER: ", "ASSISTANT:"),
messages=[],
sep=[" ","</s>"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_ALONE,
)
conv_eval_mvbench_llavanext = Conversation(
system="You are Video-ChatGPT, a large vision-language assistant. "
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language."
"Follow the instructions carefully and explain your answers in detail based on the provided video.",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
messages=[],
sep=["<|im_end|>\n","<|im_end|>\n"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_ALONE,
)
conv_eval_videoqabench = Conversation(
system="",
roles=("USER: ", "ASSISTANT:"),
messages=[],
sep=[" ","</s>"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_INTERLEAF,
pre_query_prompt="The input consists of a sequence of key frames from a video. Answer the question concisely first and followed by significant events, characters, or objects that appear throughout the frames. Question:",
post_query_prompt="\n",
answer_prompt='\nAnswer: In the video,'
)
conv_eval_videoqa_llavanext = Conversation(
system="<|im_start|>system\nAnswer the question.",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
messages=[],
sep=["<|im_end|>\n","<|im_end|>\n"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_INTERLEAF,
pre_query_prompt="The input consists of a sequence of key frames from a video. Answer the question concisely first and followed by significant events, characters, or objects that appear throughout the frames. Question:",
post_query_prompt="\n",
answer_prompt='\nAnswer: In the video,'
)
SYSTEM_RECAPTION="""You are a powerful Video Magic ChatBot, a large vision-language assistant.
You are able to understand the video content that the user provides and assist the user in a video recaptioning task.
The user will provide you with the video and maybe some extra noisy information to help you out. Make use of the information in a proper way to be competent for the recaption job
### INSTRUCTIONS:
1. Follow the user's instruction.
2. Be critical yet believe in yourself.
"""
conv_eval_recaption = Conversation(
system=SYSTEM_RECAPTION,
roles=("USER: ", "ASSISTANT:"),
messages=[],
sep=[" ","</s>"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_ALONE,
)
conv_eval_recaption_llavanext = Conversation(
system=SYSTEM_RECAPTION,
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
messages=[],
sep=["<|im_end|>\n","<|im_end|>\n"],
mm_token='<image>\n',
mm_style=MultiModalConvStyle.MM_ALONE,
)
conv_templates = {
"plain": conv_plain_v1,
"eval_vcgbench": conv_eval_vcg,
"eval_vcg_llavanext": conv_eval_vcg_llavanext,
"eval_mvbench": conv_eval_mvbench,
"eval_mvbench_llavanext": conv_eval_mvbench_llavanext,
"eval_videoqabench": conv_eval_videoqabench,
"eval_videoqa_llavanext": conv_eval_videoqa_llavanext,
"eval_recaption": conv_eval_recaption,
"eval_recaption_llavanext": conv_eval_recaption_llavanext,
}
class EvalDataset(Dataset):
def __init__(self, num_segments, test_ratio=None):
super().__init__()
self.num_segments = num_segments
self.test_ratio = test_ratio
self.decord_method = {
'video': self.read_video,
'gif': self.read_clip_gif,
'frame': self.read_frame,
}
def __getitem__(self, index) -> Any:
raise NotImplementedError('')
def __str__(self):
len_list = {}
option_list = {}
for data in self.data_list:
if data['task_type'] not in len_list:
len_list[data['task_type']] = 0
len_list[data['task_type']] += 1
if data['task_type'] not in option_list:
option_list[data['task_type']] = 0
option_list[data['task_type']] += len(data['data']['candidates'])
correct = 0
total = 0
res = f"There are {len(self.data_list)} videos as follow:\n"
for k, v in len_list.items():
correct += len_list[k]
total += option_list[k]
res += f"{v} for {k} ({option_list[k]} options => {len_list[k]/option_list[k]*100:.2f}%)\n"
correct = correct + 1 / option_list[k]
res += f"Total random accuracy: {correct/total*100:.2f}%"
return res.rstrip()
def __len__(self):
return len(self.data_list)
def get_index(self, bound, fps, max_frame, first_idx=0):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / self.num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def read_video(self, video_path, bound=None):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=4)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
return images_group
def read_gif(self, video_path, bound=None, fps=25):
gif = imageio.get_reader(video_path)
max_frame = len(gif) - 1
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for index, frame in enumerate(gif):
if index in frame_indices:
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = Image.fromarray(img)
images_group.append(img)
if len(images_group) == len(frame_indices):
break
# might be some really short videos in the gif datasets
if len(images_group) < self.num_segments:
multiplier = int(self.num_segments/len(images_group)) + 1
images_group = [image for _ in range(multiplier) for image in images_group][:self.num_segments]
assert len(images_group) == self.num_segments
return images_group
def read_clip_gif(self, video_path, bound=None, fps=25):
gif = VideoFileClip(video_path)
frames = gif.iter_frames()
max_frame = gif.reader.nframes - 1
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for index, frame in enumerate(frames):
if index in frame_indices:
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = Image.fromarray(img)
images_group.append(img)
# might be some really short videos in the gif datasets
if len(images_group) < self.num_segments:
multiplier = int(self.num_segments/len(images_group)) + 1
images_group = [image for _ in range(multiplier) for image in images_group][:self.num_segments]
assert len(images_group) == self.num_segments
return images_group
def read_frame(self, video_path, bound=None, fps=3):
max_frame = len(os.listdir(video_path))
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1
for frame_index in frame_indices:
img = Image.open(os.path.join(video_path, f"{frame_index:05d}.jpg"))
images_group.append(img)
return images_group
def set_rank_and_world_size(self, rank, world_size):
self.rank = rank
self.world_size = world_size
# self.data_list = self.data_list[::200] # debug
if self.test_ratio is None:
self.data_list = self.data_list[rank::world_size]
else:
np.random.RandomState(42).shuffle(self.data_list)
if isinstance(self.test_ratio, float):
num_samples = int(len(self.data_list) * self.test_ratio)
else:
num_samples = int(self.test_ratio)
self.data_list = self.data_list[rank:num_samples:world_size]
class ChatPllava:
print_res=True
do_sample=False
def __init__(self, model, processor):
self.model = model
self.processor = processor
def ask(self, text, conv: Conversation, system):
conv.system = system
conv.user_query(text, )
return conv
def answer(self, conv: Conversation, img_list, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0):
torch.cuda.empty_cache()
prompt = conv.get_prompt()
if prompt.count(conv.mm_token) < len(img_list):
diff_mm_num = len(img_list) - prompt.count(conv.mm_token)
for i in range(diff_mm_num):
conv.user_query("", is_mm=True)
prompt = conv.get_prompt()
inputs = self.processor(text=prompt, images=img_list, return_tensors="pt")
if inputs['pixel_values'] is None:
inputs.pop('pixel_values')
inputs = inputs.to(self.model.device)
with torch.no_grad():
output_token = self.model.generate(**inputs, media_type='video',
do_sample=self.do_sample,max_new_tokens=max_new_tokens, num_beams=num_beams, min_length=min_length,
top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature,
) # dont need to long for the choice.
output_text = self.processor.batch_decode(output_token, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
if self.print_res:
print('###PROMPT: ', prompt)
print('###LM OUTPUT TEXT', output_text)
# <|im_start|> encode and then decode would extend a space at folloing, this is insane...
if conv.roles[-1] == "<|im_start|>assistant\n":
split_tag = "<|im_start|> assistant\n"
else:
split_tag = conv.roles[-1]
output_text = output_text.split(split_tag)[-1].rstrip(conv.sep[1])
conv.assistant_response(output_text)
return output_text, output_token.cpu().numpy(), conv
def get_index(self, num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(self, video_path, num_segments=8, return_msg=False):
vr = VideoReader(video_path, ctx=cpu(0))
num_frames = len(vr)
frame_indices = self.get_index(num_frames, num_segments)
duration = len(vr) // vr.get_avg_fps()
index = np.linspace(0, len(vr)-1, num=int(duration))
buffer = vr.get_batch(index).asnumpy()
# transform
images_group = list()
for frame in buffer:
img = Image.fromarray(frame)
images_group.append(img)
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
if return_msg:
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
# " " should be added in the start and end
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
return images_group, msg
else:
return images_group
def upload_video(self, image, conv: Conversation, img_list: list[list], num_segments=None):
num_segments = self.model.config.num_frames if num_segments is None else num_segments
if isinstance(image, str): # is a image path
vid, msg = self.load_video(image, num_segments=num_segments, return_msg=True)
else:
raise NotImplementedError
print("Input video shape:", len(vid), *vid[0].size)
img_list.append(vid)
conv.user_query("", is_mm=True)
msg = "Received."
# self.conv.append_message(self.conv.roles[1], msg)
return msg, img_list, conv
def upload_img(self, image, conv, img_list):
assert False
img = image#Image.open(image)#.convert('RGB')
transform = T.Compose(
[
T.Resize(
(224, 224), interpolation=InterpolationMode.BICUBIC
),
T.ToTensor(),
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
img = transform(img).unsqueeze(0).unsqueeze(0).cuda()
image_emb, _ = self.model.encode_img(img, "Observe the image and answer the question.")
img_list.append(image_emb)
conv.messages.append([
conv.roles[0],
f"<Image><ImageHere></Image>\n"
])
msg = "Received."
# self.conv.append_message(self.conv.roles[1], msg)
return msg,img_list, conv
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
|