Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Conversion script for the LDM checkpoints. """ | |
import argparse | |
import importlib | |
import torch | |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml | |
parser.add_argument( | |
"--original_config_file", | |
default=None, | |
type=str, | |
help="The YAML config file corresponding to the original architecture.", | |
) | |
parser.add_argument( | |
"--config_files", | |
default=None, | |
type=str, | |
help="The YAML config file corresponding to the architecture.", | |
) | |
parser.add_argument( | |
"--num_in_channels", | |
default=None, | |
type=int, | |
help="The number of input channels. If `None` number of input channels will be automatically inferred.", | |
) | |
parser.add_argument( | |
"--scheduler_type", | |
default="pndm", | |
type=str, | |
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", | |
) | |
parser.add_argument( | |
"--pipeline_type", | |
default=None, | |
type=str, | |
help=( | |
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" | |
". If `None` pipeline will be automatically inferred." | |
), | |
) | |
parser.add_argument( | |
"--image_size", | |
default=None, | |
type=int, | |
help=( | |
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" | |
" Base. Use 768 for Stable Diffusion v2." | |
), | |
) | |
parser.add_argument( | |
"--prediction_type", | |
default=None, | |
type=str, | |
help=( | |
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" | |
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." | |
), | |
) | |
parser.add_argument( | |
"--extract_ema", | |
action="store_true", | |
help=( | |
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
), | |
) | |
parser.add_argument( | |
"--upcast_attention", | |
action="store_true", | |
help=( | |
"Whether the attention computation should always be upcasted. This is necessary when running stable" | |
" diffusion 2.1." | |
), | |
) | |
parser.add_argument( | |
"--from_safetensors", | |
action="store_true", | |
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", | |
) | |
parser.add_argument( | |
"--to_safetensors", | |
action="store_true", | |
help="Whether to store pipeline in safetensors format or not.", | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | |
parser.add_argument( | |
"--stable_unclip", | |
type=str, | |
default=None, | |
required=False, | |
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", | |
) | |
parser.add_argument( | |
"--stable_unclip_prior", | |
type=str, | |
default=None, | |
required=False, | |
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", | |
) | |
parser.add_argument( | |
"--clip_stats_path", | |
type=str, | |
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", | |
required=False, | |
) | |
parser.add_argument( | |
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." | |
) | |
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") | |
parser.add_argument( | |
"--vae_path", | |
type=str, | |
default=None, | |
required=False, | |
help="Set to a path, hub id to an already converted vae to not convert it again.", | |
) | |
parser.add_argument( | |
"--pipeline_class_name", | |
type=str, | |
default=None, | |
required=False, | |
help="Specify the pipeline class name", | |
) | |
args = parser.parse_args() | |
if args.pipeline_class_name is not None: | |
library = importlib.import_module("diffusers") | |
class_obj = getattr(library, args.pipeline_class_name) | |
pipeline_class = class_obj | |
else: | |
pipeline_class = None | |
pipe = download_from_original_stable_diffusion_ckpt( | |
checkpoint_path_or_dict=args.checkpoint_path, | |
original_config_file=args.original_config_file, | |
config_files=args.config_files, | |
image_size=args.image_size, | |
prediction_type=args.prediction_type, | |
model_type=args.pipeline_type, | |
extract_ema=args.extract_ema, | |
scheduler_type=args.scheduler_type, | |
num_in_channels=args.num_in_channels, | |
upcast_attention=args.upcast_attention, | |
from_safetensors=args.from_safetensors, | |
device=args.device, | |
stable_unclip=args.stable_unclip, | |
stable_unclip_prior=args.stable_unclip_prior, | |
clip_stats_path=args.clip_stats_path, | |
controlnet=args.controlnet, | |
vae_path=args.vae_path, | |
pipeline_class=pipeline_class, | |
) | |
if args.half: | |
pipe.to(torch_dtype=torch.float16) | |
if args.controlnet: | |
# only save the controlnet model | |
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |
else: | |
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |