File size: 18,670 Bytes
ba5dcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from . import resnet, resnext
try:
    from lib.nn import SynchronizedBatchNorm2d
except ImportError:
    from torch.nn import BatchNorm2d as SynchronizedBatchNorm2d


class SegmentationModuleBase(nn.Module):
    def __init__(self):
        super(SegmentationModuleBase, self).__init__()

    @staticmethod
    def pixel_acc(pred, label, ignore_index=-1):
        _, preds = torch.max(pred, dim=1)
        valid = (label != ignore_index).long()
        acc_sum = torch.sum(valid * (preds == label).long())
        pixel_sum = torch.sum(valid)
        acc = acc_sum.float() / (pixel_sum.float() + 1e-10)
        return acc

    @staticmethod
    def part_pixel_acc(pred_part, gt_seg_part, gt_seg_object, object_label, valid):
        mask_object = (gt_seg_object == object_label)
        _, pred = torch.max(pred_part, dim=1)
        acc_sum = mask_object * (pred == gt_seg_part)
        acc_sum = torch.sum(acc_sum.view(acc_sum.size(0), -1), dim=1)
        acc_sum = torch.sum(acc_sum * valid)
        pixel_sum = torch.sum(mask_object.view(mask_object.size(0), -1), dim=1)
        pixel_sum = torch.sum(pixel_sum * valid)
        return acc_sum, pixel_sum 

    @staticmethod
    def part_loss(pred_part, gt_seg_part, gt_seg_object, object_label, valid):
        mask_object = (gt_seg_object == object_label)
        loss = F.nll_loss(pred_part, gt_seg_part * mask_object.long(), reduction='none')
        loss = loss * mask_object.float()
        loss = torch.sum(loss.view(loss.size(0), -1), dim=1)
        nr_pixel = torch.sum(mask_object.view(mask_object.shape[0], -1), dim=1)
        sum_pixel = (nr_pixel * valid).sum()
        loss = (loss * valid.float()).sum() / torch.clamp(sum_pixel, 1).float()
        return loss


class SegmentationModule(SegmentationModuleBase):
    def __init__(self, net_enc, net_dec, labeldata, loss_scale=None):
        super(SegmentationModule, self).__init__()
        self.encoder = net_enc
        self.decoder = net_dec
        self.crit_dict = nn.ModuleDict()
        if loss_scale is None:
            self.loss_scale = {"object": 1, "part": 0.5, "scene": 0.25, "material": 1}
        else:
            self.loss_scale = loss_scale

        # criterion
        self.crit_dict["object"] = nn.NLLLoss(ignore_index=0)  # ignore background 0
        self.crit_dict["material"] = nn.NLLLoss(ignore_index=0)  # ignore background 0
        self.crit_dict["scene"] = nn.NLLLoss(ignore_index=-1)  # ignore unlabelled -1

        # Label data - read from json
        self.labeldata = labeldata
        object_to_num = {k: v for v, k in enumerate(labeldata['object'])}
        part_to_num = {k: v for v, k in enumerate(labeldata['part'])}
        self.object_part = {object_to_num[k]:
                [part_to_num[p] for p in v]
                for k, v in labeldata['object_part'].items()}
        self.object_with_part = sorted(self.object_part.keys())
        self.decoder.object_part = self.object_part
        self.decoder.object_with_part = self.object_with_part

    def forward(self, feed_dict, *, seg_size=None):
        if seg_size is None: # training

            if feed_dict['source_idx'] == 0:
                output_switch = {"object": True, "part": True, "scene": True, "material": False}
            elif feed_dict['source_idx'] == 1:
                output_switch = {"object": False, "part": False, "scene": False, "material": True}
            else:
                raise ValueError

            pred = self.decoder(
                self.encoder(feed_dict['img'], return_feature_maps=True),
                output_switch=output_switch
            )

            # loss
            loss_dict = {}
            if pred['object'] is not None:  # object
                loss_dict['object'] = self.crit_dict['object'](pred['object'], feed_dict['seg_object'])
            if pred['part'] is not None:  # part
                part_loss = 0
                for idx_part, object_label in enumerate(self.object_with_part):
                    part_loss += self.part_loss(
                        pred['part'][idx_part], feed_dict['seg_part'],
                        feed_dict['seg_object'], object_label, feed_dict['valid_part'][:, idx_part])
                loss_dict['part'] = part_loss
            if pred['scene'] is not None:  # scene
                loss_dict['scene'] = self.crit_dict['scene'](pred['scene'], feed_dict['scene_label'])
            if pred['material'] is not None:  # material
                loss_dict['material'] = self.crit_dict['material'](pred['material'], feed_dict['seg_material'])
            loss_dict['total'] = sum([loss_dict[k] * self.loss_scale[k] for k in loss_dict.keys()])

            # metric 
            metric_dict= {}
            if pred['object'] is not None:
                metric_dict['object'] = self.pixel_acc(
                    pred['object'], feed_dict['seg_object'], ignore_index=0)
            if pred['material'] is not None:
                metric_dict['material'] = self.pixel_acc(
                    pred['material'], feed_dict['seg_material'], ignore_index=0)
            if pred['part'] is not None:
                acc_sum, pixel_sum = 0, 0
                for idx_part, object_label in enumerate(self.object_with_part):
                    acc, pixel = self.part_pixel_acc(
                        pred['part'][idx_part], feed_dict['seg_part'], feed_dict['seg_object'],
                        object_label, feed_dict['valid_part'][:, idx_part])
                    acc_sum += acc
                    pixel_sum += pixel
                metric_dict['part'] = acc_sum.float() / (pixel_sum.float() + 1e-10)
            if pred['scene'] is not None:
                metric_dict['scene'] = self.pixel_acc(
                    pred['scene'], feed_dict['scene_label'], ignore_index=-1)

            return {'metric': metric_dict, 'loss': loss_dict}
        else: # inference
            output_switch = {"object": True, "part": True, "scene": True, "material": True}
            pred = self.decoder(self.encoder(feed_dict['img'], return_feature_maps=True),
                                output_switch=output_switch, seg_size=seg_size)
            return pred


def conv3x3(in_planes, out_planes, stride=1, has_bias=False):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=has_bias)


def conv3x3_bn_relu(in_planes, out_planes, stride=1):
    return nn.Sequential(
            conv3x3(in_planes, out_planes, stride),
            SynchronizedBatchNorm2d(out_planes),
            nn.ReLU(inplace=True),
            )


class ModelBuilder:
    def __init__(self):
        pass

    # custom weights initialization
    @staticmethod
    def weights_init(m):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            nn.init.kaiming_normal_(m.weight.data, nonlinearity='relu')
        elif classname.find('BatchNorm') != -1:
            m.weight.data.fill_(1.)
            m.bias.data.fill_(1e-4)
        #elif classname.find('Linear') != -1:
        #    m.weight.data.normal_(0.0, 0.0001)

    def build_encoder(self, arch='resnet50_dilated8', fc_dim=512, weights=''):
        pretrained = True if len(weights) == 0 else False
        if arch == 'resnet34':
            raise NotImplementedError
            orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained)
            net_encoder = Resnet(orig_resnet)
        elif arch == 'resnet34_dilated8':
            raise NotImplementedError
            orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained)
            net_encoder = ResnetDilated(orig_resnet,
                                        dilate_scale=8)
        elif arch == 'resnet34_dilated16':
            raise NotImplementedError
            orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained)
            net_encoder = ResnetDilated(orig_resnet,
                                        dilate_scale=16)
        elif arch == 'resnet50':
            orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
            net_encoder = Resnet(orig_resnet)
        elif arch == 'resnet101':
            orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained)
            net_encoder = Resnet(orig_resnet)
        elif arch == 'resnext101':
            orig_resnext = resnext.__dict__['resnext101'](pretrained=pretrained)
            net_encoder = Resnet(orig_resnext) # we can still use class Resnet
        else:
            raise Exception('Architecture undefined!')

        # net_encoder.apply(self.weights_init)
        if len(weights) > 0:
            # print('Loading weights for net_encoder')
            net_encoder.load_state_dict(
                torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
        return net_encoder

    def build_decoder(self, nr_classes,
                      arch='ppm_bilinear_deepsup', fc_dim=512,
                      weights='', use_softmax=False):
        if arch == 'upernet_lite':
            net_decoder = UPerNet(
                nr_classes=nr_classes,
                fc_dim=fc_dim,
                use_softmax=use_softmax,
                fpn_dim=256)
        elif arch == 'upernet':
            net_decoder = UPerNet(
                nr_classes=nr_classes,
                fc_dim=fc_dim,
                use_softmax=use_softmax,
                fpn_dim=512)
        else:
            raise Exception('Architecture undefined!')

        net_decoder.apply(self.weights_init)
        if len(weights) > 0:
            # print('Loading weights for net_decoder')
            net_decoder.load_state_dict(
                torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
        return net_decoder


class Resnet(nn.Module):
    def __init__(self, orig_resnet):
        super(Resnet, self).__init__()

        # take pretrained resnet, except AvgPool and FC
        self.conv1 = orig_resnet.conv1
        self.bn1 = orig_resnet.bn1
        self.relu1 = orig_resnet.relu1
        self.conv2 = orig_resnet.conv2
        self.bn2 = orig_resnet.bn2
        self.relu2 = orig_resnet.relu2
        self.conv3 = orig_resnet.conv3
        self.bn3 = orig_resnet.bn3
        self.relu3 = orig_resnet.relu3
        self.maxpool = orig_resnet.maxpool
        self.layer1 = orig_resnet.layer1
        self.layer2 = orig_resnet.layer2
        self.layer3 = orig_resnet.layer3
        self.layer4 = orig_resnet.layer4

    def forward(self, x, return_feature_maps=False):
        conv_out = []

        x = self.relu1(self.bn1(self.conv1(x)))
        x = self.relu2(self.bn2(self.conv2(x)))
        x = self.relu3(self.bn3(self.conv3(x)))
        x = self.maxpool(x)

        x = self.layer1(x); conv_out.append(x);
        x = self.layer2(x); conv_out.append(x);
        x = self.layer3(x); conv_out.append(x);
        x = self.layer4(x); conv_out.append(x);

        if return_feature_maps:
            return conv_out
        return [x]


# upernet
class UPerNet(nn.Module):
    def __init__(self, nr_classes, fc_dim=4096,
                 use_softmax=False, pool_scales=(1, 2, 3, 6),
                 fpn_inplanes=(256,512,1024,2048), fpn_dim=256):
        # Lazy import so that compilation isn't needed if not being used.
        from .prroi_pool import PrRoIPool2D
        super(UPerNet, self).__init__()
        self.use_softmax = use_softmax

        # PPM Module
        self.ppm_pooling = []
        self.ppm_conv = []

        for scale in pool_scales:
            # we use the feature map size instead of input image size, so down_scale = 1.0
            self.ppm_pooling.append(PrRoIPool2D(scale, scale, 1.))
            self.ppm_conv.append(nn.Sequential(
                nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
                SynchronizedBatchNorm2d(512),
                nn.ReLU(inplace=True)
            ))
        self.ppm_pooling = nn.ModuleList(self.ppm_pooling)
        self.ppm_conv = nn.ModuleList(self.ppm_conv)
        self.ppm_last_conv = conv3x3_bn_relu(fc_dim + len(pool_scales)*512, fpn_dim, 1)

        # FPN Module
        self.fpn_in = []
        for fpn_inplane in fpn_inplanes[:-1]: # skip the top layer
            self.fpn_in.append(nn.Sequential(
                nn.Conv2d(fpn_inplane, fpn_dim, kernel_size=1, bias=False),
                SynchronizedBatchNorm2d(fpn_dim),
                nn.ReLU(inplace=True)
            ))
        self.fpn_in = nn.ModuleList(self.fpn_in)

        self.fpn_out = []
        for i in range(len(fpn_inplanes) - 1): # skip the top layer
            self.fpn_out.append(nn.Sequential(
                conv3x3_bn_relu(fpn_dim, fpn_dim, 1),
            ))
        self.fpn_out = nn.ModuleList(self.fpn_out)

        self.conv_fusion = conv3x3_bn_relu(len(fpn_inplanes) * fpn_dim, fpn_dim, 1)

        # background included. if ignore in loss, output channel 0 will not be trained.
        self.nr_scene_class, self.nr_object_class, self.nr_part_class, self.nr_material_class = \
            nr_classes['scene'], nr_classes['object'], nr_classes['part'], nr_classes['material']

        # input: PPM out, input_dim: fpn_dim
        self.scene_head = nn.Sequential(
            conv3x3_bn_relu(fpn_dim, fpn_dim, 1),
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(fpn_dim, self.nr_scene_class, kernel_size=1, bias=True)
        )

        # input: Fusion out, input_dim: fpn_dim
        self.object_head = nn.Sequential(
            conv3x3_bn_relu(fpn_dim, fpn_dim, 1),
            nn.Conv2d(fpn_dim, self.nr_object_class, kernel_size=1, bias=True)
        )

        # input: Fusion out, input_dim: fpn_dim
        self.part_head = nn.Sequential(
            conv3x3_bn_relu(fpn_dim, fpn_dim, 1),
            nn.Conv2d(fpn_dim, self.nr_part_class, kernel_size=1, bias=True)
        )

        # input: FPN_2 (P2), input_dim: fpn_dim
        self.material_head = nn.Sequential(
            conv3x3_bn_relu(fpn_dim, fpn_dim, 1),
            nn.Conv2d(fpn_dim, self.nr_material_class, kernel_size=1, bias=True)
        )

    def forward(self, conv_out, output_switch=None, seg_size=None):

        output_dict = {k: None for k in output_switch.keys()}

        conv5 = conv_out[-1]
        input_size = conv5.size()
        ppm_out = [conv5]
        roi = [] # fake rois, just used for pooling
        for i in range(input_size[0]): # batch size
            roi.append(torch.Tensor([i, 0, 0, input_size[3], input_size[2]]).view(1, -1)) # b, x0, y0, x1, y1
        roi = torch.cat(roi, dim=0).type_as(conv5)
        ppm_out = [conv5]
        for pool_scale, pool_conv in zip(self.ppm_pooling, self.ppm_conv):
            ppm_out.append(pool_conv(F.interpolate(
                pool_scale(conv5, roi.detach()),
                (input_size[2], input_size[3]),
                mode='bilinear', align_corners=False)))
        ppm_out = torch.cat(ppm_out, 1)
        f = self.ppm_last_conv(ppm_out)

        if output_switch['scene']: # scene
            output_dict['scene'] = self.scene_head(f)

        if output_switch['object'] or output_switch['part'] or output_switch['material']:
            fpn_feature_list = [f]
            for i in reversed(range(len(conv_out) - 1)):
                conv_x = conv_out[i]
                conv_x = self.fpn_in[i](conv_x) # lateral branch

                f = F.interpolate(
                    f, size=conv_x.size()[2:], mode='bilinear', align_corners=False) # top-down branch
                f = conv_x + f

                fpn_feature_list.append(self.fpn_out[i](f))
            fpn_feature_list.reverse() # [P2 - P5]

            # material
            if output_switch['material']:
                output_dict['material'] = self.material_head(fpn_feature_list[0])

            if output_switch['object'] or output_switch['part']:
                output_size = fpn_feature_list[0].size()[2:]
                fusion_list = [fpn_feature_list[0]]
                for i in range(1, len(fpn_feature_list)):
                    fusion_list.append(F.interpolate(
                        fpn_feature_list[i],
                        output_size,
                        mode='bilinear', align_corners=False))
                fusion_out = torch.cat(fusion_list, 1)
                x = self.conv_fusion(fusion_out)

                if output_switch['object']: # object
                    output_dict['object'] = self.object_head(x)
                if output_switch['part']:
                    output_dict['part'] = self.part_head(x)

        if self.use_softmax:  # is True during inference
            # inference scene
            x = output_dict['scene']
            x = x.squeeze(3).squeeze(2)
            x = F.softmax(x, dim=1)
            output_dict['scene'] = x

            # inference object, material
            for k in ['object', 'material']:
                x = output_dict[k]
                x = F.interpolate(x, size=seg_size, mode='bilinear', align_corners=False)
                x = F.softmax(x, dim=1)
                output_dict[k] = x

            # inference part
            x = output_dict['part']
            x = F.interpolate(x, size=seg_size, mode='bilinear', align_corners=False)
            part_pred_list, head = [], 0
            for idx_part, object_label in enumerate(self.object_with_part):
                n_part = len(self.object_part[object_label])
                _x = F.interpolate(x[:, head: head + n_part], size=seg_size, mode='bilinear', align_corners=False)
                _x = F.softmax(_x, dim=1)
                part_pred_list.append(_x)
                head += n_part
            output_dict['part'] = part_pred_list

        else:   # Training
            # object, scene, material
            for k in ['object', 'scene', 'material']:
                if output_dict[k] is None:
                    continue
                x = output_dict[k]
                x = F.log_softmax(x, dim=1)
                if k == "scene":  # for scene
                    x = x.squeeze(3).squeeze(2)
                output_dict[k] = x
            if output_dict['part'] is not None:
                part_pred_list, head = [], 0
                for idx_part, object_label in enumerate(self.object_with_part):
                    n_part = len(self.object_part[object_label])
                    x = output_dict['part'][:, head: head + n_part]
                    x = F.log_softmax(x, dim=1)
                    part_pred_list.append(x)
                    head += n_part
                output_dict['part'] = part_pred_list

        return output_dict