Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM | |
def fix_tokenizer(tokenizer, new_lang='fer_Latn'): | |
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """ | |
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder) | |
tokenizer.lang_code_to_id[new_lang] = old_len-1 | |
tokenizer.id_to_lang_code[old_len-1] = new_lang | |
# always move "mask" to the last position | |
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset | |
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) | |
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()} | |
if new_lang not in tokenizer._additional_special_tokens: | |
tokenizer._additional_special_tokens.append(new_lang) | |
# clear the added token encoder; otherwise a new token may end up there by mistake | |
tokenizer.added_tokens_encoder = {} | |
tokenizer.added_tokens_decoder = {} | |
MODEL_URL = "DinoDelija/nllb_english_fering" | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL) | |
tokenizer = NllbTokenizer.from_pretrained(MODEL_URL) | |
fix_tokenizer(tokenizer) | |
def translate( | |
text, | |
model, | |
tokenizer, | |
src_lang='eng_Latn', | |
tgt_lang='fer_Latn', | |
max_length='auto', | |
num_beams=4, | |
n_out=None, | |
**kwargs | |
): | |
tokenizer.src_lang = src_lang | |
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) | |
if max_length == 'auto': | |
max_length = int(32 + 2.0 * encoded.input_ids.shape[1]) | |
model.eval() | |
generated_tokens = model.generate( | |
**encoded.to(model.device), | |
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], | |
max_length=max_length, | |
num_beams=num_beams, | |
num_return_sequences=n_out or 1, | |
**kwargs | |
) | |
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
if isinstance(text, str) and n_out is None: | |
return out[0] | |
return | |
# pipeline = pipeline(task="translation", model="DinoDelija/nllb_english_fering") | |
st.title("Translate English To Fering") | |
eng_sentence = st.text_input("English Sentence", key="eng") | |
translation = translate(eng_sentence, model=model, tokenizer=tokenizer) | |
print(eng_sentence) | |
print(translation) | |
# st.write('Fering transaltion of the sentence is: ', translation) | |
if translation != None: | |
st.markdown(f'''Fering: \n | |
{translation}''') |