|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os
|
|
import streamlit as st
|
|
|
|
from dotenv import load_dotenv, find_dotenv
|
|
from huggingface_hub import InferenceClient
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.schema import Document
|
|
from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
|
|
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
|
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
|
from pymongo import MongoClient
|
|
from pymongo.collection import Collection
|
|
from typing import Dict, Any
|
|
|
|
|
|
|
|
|
|
|
|
class RAGQuestionAnswering:
|
|
def __init__(self):
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Initializes the RAG Question Answering system by setting up configuration
|
|
and loading environment variables.
|
|
|
|
Assumptions
|
|
-----------
|
|
- Expects .env file with MONGO_URI and HF_TOKEN
|
|
- Requires proper MongoDB setup with vector search index
|
|
- Needs connection to Hugging Face API
|
|
|
|
Notes
|
|
-----
|
|
This is the main class that handles all RAG operations
|
|
"""
|
|
self.load_environment()
|
|
self.setup_mongodb()
|
|
self.setup_embedding_model()
|
|
self.setup_vector_search()
|
|
self.setup_rag_chain()
|
|
|
|
def load_environment(self) -> None:
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Loads environment variables from .env file and sets up configuration constants.
|
|
|
|
Assumptions
|
|
-----------
|
|
Expects a .env file with MONGO_URI and HF_TOKEN defined
|
|
|
|
Notes
|
|
-----
|
|
Will stop the application if required environment variables are missing
|
|
"""
|
|
|
|
load_dotenv(find_dotenv())
|
|
self.MONGO_URI = os.getenv("MONGO_URI")
|
|
self.HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
if not self.MONGO_URI or not self.HF_TOKEN:
|
|
st.error("Please ensure MONGO_URI and HF_TOKEN are set in your .env file")
|
|
st.stop()
|
|
|
|
|
|
self.DB_NAME = "txts"
|
|
self.COLLECTION_NAME = "txts_collection"
|
|
self.VECTOR_SEARCH_INDEX = "vector_index"
|
|
|
|
def setup_mongodb(self) -> None:
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Initializes the MongoDB connection and sets up the collection.
|
|
|
|
Assumptions
|
|
-----------
|
|
- Valid MongoDB URI is available
|
|
- Database and collection exist in MongoDB Atlas
|
|
|
|
Notes
|
|
-----
|
|
Uses st.cache_resource for efficient connection management
|
|
"""
|
|
|
|
@st.cache_resource
|
|
def init_mongodb() -> Collection:
|
|
cluster = MongoClient(self.MONGO_URI)
|
|
return cluster[self.DB_NAME][self.COLLECTION_NAME]
|
|
|
|
self.mongodb_collection = init_mongodb()
|
|
|
|
def setup_embedding_model(self) -> None:
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Initializes the embedding model for vector search.
|
|
|
|
Assumptions
|
|
-----------
|
|
- Valid Hugging Face API token
|
|
- Internet connection to access the model
|
|
|
|
Notes
|
|
-----
|
|
Uses the all-mpnet-base-v2 model from sentence-transformers
|
|
"""
|
|
|
|
@st.cache_resource
|
|
def init_embedding_model() -> HuggingFaceInferenceAPIEmbeddings:
|
|
return HuggingFaceInferenceAPIEmbeddings(
|
|
api_key=self.HF_TOKEN,
|
|
model_name="sentence-transformers/all-mpnet-base-v2",
|
|
)
|
|
|
|
self.embedding_model = init_embedding_model()
|
|
|
|
def setup_vector_search(self) -> None:
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Sets up the vector search functionality using MongoDB Atlas.
|
|
|
|
Assumptions
|
|
-----------
|
|
- MongoDB Atlas vector search index is properly configured
|
|
- Valid embedding model is initialized
|
|
|
|
Notes
|
|
-----
|
|
Creates a retriever with similarity search and score threshold
|
|
"""
|
|
|
|
@st.cache_resource
|
|
def init_vector_search() -> MongoDBAtlasVectorSearch:
|
|
return MongoDBAtlasVectorSearch.from_connection_string(
|
|
connection_string=self.MONGO_URI,
|
|
namespace=f"{self.DB_NAME}.{self.COLLECTION_NAME}",
|
|
embedding=self.embedding_model,
|
|
index_name=self.VECTOR_SEARCH_INDEX,
|
|
)
|
|
|
|
self.vector_search = init_vector_search()
|
|
self.retriever = self.vector_search.as_retriever(
|
|
search_type="similarity", search_kwargs={"k": 10, "score_threshold": 0.85}
|
|
)
|
|
|
|
def format_docs(self, docs: list[Document]) -> str:
|
|
"""
|
|
Parameters
|
|
----------
|
|
**docs:** list[Document] - List of documents to be formatted
|
|
|
|
Output
|
|
------
|
|
str: Formatted string containing concatenated document content
|
|
|
|
Purpose
|
|
-------
|
|
Formats the retrieved documents into a single string for processing
|
|
|
|
Assumptions
|
|
-----------
|
|
Documents have page_content attribute
|
|
|
|
Notes
|
|
-----
|
|
Joins documents with double newlines for better readability
|
|
"""
|
|
|
|
return "\n\n".join(doc.page_content for doc in docs)
|
|
|
|
def generate_response(self, input_dict: Dict[str, Any]) -> str:
|
|
"""
|
|
Parameters
|
|
----------
|
|
**input_dict:** Dict[str, Any] - Dictionary containing context and question
|
|
|
|
Output
|
|
------
|
|
str: Generated response from the model
|
|
|
|
Purpose
|
|
-------
|
|
Generates a response using the Hugging Face model based on context and question
|
|
|
|
Assumptions
|
|
-----------
|
|
- Valid Hugging Face API token
|
|
- Input dictionary contains 'context' and 'question' keys
|
|
|
|
Notes
|
|
-----
|
|
Uses Qwen2.5-1.5B-Instruct model with controlled temperature
|
|
"""
|
|
hf_client = InferenceClient(api_key=self.HF_TOKEN)
|
|
formatted_prompt = self.prompt.format(**input_dict)
|
|
|
|
response = hf_client.chat.completions.create(
|
|
model="Qwen/Qwen2.5-1.5B-Instruct",
|
|
messages=[
|
|
{"role": "system", "content": formatted_prompt},
|
|
{"role": "user", "content": input_dict["question"]},
|
|
],
|
|
max_tokens=1000,
|
|
temperature=0.2,
|
|
)
|
|
|
|
return response.choices[0].message.content
|
|
|
|
def setup_rag_chain(self) -> None:
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Sets up the RAG chain for processing questions and generating answers
|
|
|
|
Assumptions
|
|
-----------
|
|
Retriever and response generator are properly initialized
|
|
|
|
Notes
|
|
-----
|
|
Creates a chain that combines retrieval and response generation
|
|
"""
|
|
|
|
self.prompt = PromptTemplate.from_template(
|
|
"""Use the following pieces of context to answer the question at the end.
|
|
|
|
START OF CONTEXT:
|
|
{context}
|
|
END OF CONTEXT:
|
|
|
|
START OF QUESTION:
|
|
{question}
|
|
END OF QUESTION:
|
|
|
|
If you do not know the answer, just say that you do not know.
|
|
NEVER assume things.
|
|
"""
|
|
)
|
|
|
|
self.rag_chain = {
|
|
"context": self.retriever | RunnableLambda(self.format_docs),
|
|
"question": RunnablePassthrough(),
|
|
} | RunnableLambda(self.generate_response)
|
|
|
|
def process_question(self, question: str) -> str:
|
|
"""
|
|
Parameters
|
|
----------
|
|
**question:** str - The user's question to be answered
|
|
|
|
Output
|
|
------
|
|
str: The generated answer to the question
|
|
|
|
Purpose
|
|
-------
|
|
Processes a user question through the RAG chain and returns an answer
|
|
|
|
Assumptions
|
|
-----------
|
|
- Question is a non-empty string
|
|
- RAG chain is properly initialized
|
|
|
|
Notes
|
|
-----
|
|
Main interface for question-answering functionality
|
|
"""
|
|
|
|
return self.rag_chain.invoke(question)
|
|
|
|
|
|
|
|
def setup_streamlit_ui() -> None:
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Sets up the Streamlit user interface with proper styling and layout
|
|
|
|
Assumptions
|
|
-----------
|
|
- CSS file exists at ./static/styles/style.css
|
|
- Image file exists at ./static/images/ctp.png
|
|
|
|
Notes
|
|
-----
|
|
Handles all UI-related setup and styling
|
|
"""
|
|
|
|
st.set_page_config(page_title="RAG Question Answering", page_icon="🤖")
|
|
|
|
|
|
with open("./static/styles/style.css") as f:
|
|
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
|
|
|
|
|
st.markdown(
|
|
'<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">RAG Question Answering</h1>',
|
|
unsafe_allow_html=True,
|
|
)
|
|
st.markdown(
|
|
'<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">Using Zoom Closed Captioning From The Lectures</h3>',
|
|
unsafe_allow_html=True,
|
|
)
|
|
st.markdown(
|
|
'<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">CUNY Tech Prep Tutorial 5</h2>',
|
|
unsafe_allow_html=True,
|
|
)
|
|
|
|
|
|
left_co, cent_co, last_co = st.columns(3)
|
|
with cent_co:
|
|
st.image("./static/images/ctp.png")
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
"""
|
|
Parameters
|
|
----------
|
|
None
|
|
|
|
Output
|
|
------
|
|
None
|
|
|
|
Purpose
|
|
-------
|
|
Main function that runs the Streamlit application
|
|
|
|
Assumptions
|
|
-----------
|
|
All required environment variables and files are present
|
|
|
|
Notes
|
|
-----
|
|
Entry point for the application
|
|
"""
|
|
|
|
|
|
setup_streamlit_ui()
|
|
|
|
|
|
rag_system = RAGQuestionAnswering()
|
|
|
|
|
|
query = st.text_input("Question:", key="question_input")
|
|
|
|
|
|
if st.button("Submit", type="primary"):
|
|
if query:
|
|
with st.spinner("Generating response..."):
|
|
response = rag_system.process_question(query)
|
|
st.text_area("Answer:", value=response, height=200, disabled=True)
|
|
else:
|
|
st.warning("Please enter a question.")
|
|
|
|
|
|
st.markdown(
|
|
"""
|
|
<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
|
|
<b>Check out our <a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;">GitHub repository</a></b>
|
|
</p>
|
|
""",
|
|
unsafe_allow_html=True,
|
|
)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|