File size: 12,274 Bytes
d1c2df0
 
 
 
 
 
e91b143
 
 
 
d1c2df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329da28
 
d1c2df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55b6d0
d1c2df0
 
 
5cf2c77
d1c2df0
 
 
 
 
 
329da28
d1c2df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55b6d0
d1c2df0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#############################################################################################################################
# Filename   : app.py
# Description: A Streamlit application to showcase how RAG works.
# Author     : Georgios Ioannou
#
# Copyright © 2024 by Georgios Ioannou

#RAG Code written by Farhikhta Farzan
#MONGODB database created by Farhikhta Farzan
#Documents and research gathered by Keira James, Farhikhta Farzan, and Tesneem Essa
#############################################################################################################################
# Import libraries.
import os
import streamlit as st

from dotenv import load_dotenv, find_dotenv
from huggingface_hub import InferenceClient
from langchain.prompts import PromptTemplate
from langchain.schema import Document
from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from pymongo.collection import Collection
from typing import Dict, Any


#############################################################################################################################


class RAGQuestionAnswering:
    def __init__(self):
        """
        Parameters
        ----------
        None

        Output
        ------
        None

        Purpose
        -------
        Initializes the RAG Question Answering system by setting up configuration
        and loading environment variables.

        Assumptions
        -----------
        - Expects .env file with MONGO_URI and HF_TOKEN
        - Requires proper MongoDB setup with vector search index
        - Needs connection to Hugging Face API

        Notes
        -----
        This is the main class that handles all RAG operations
        """
        self.load_environment()
        self.setup_mongodb()
        self.setup_embedding_model()
        self.setup_vector_search()
        self.setup_rag_chain()

    def load_environment(self) -> None:
        """
        Parameters
        ----------
        None

        Output
        ------
        None

        Purpose
        -------
        Loads environment variables from .env file and sets up configuration constants.

        Assumptions
        -----------
        Expects a .env file with MONGO_URI and HF_TOKEN defined

        Notes
        -----
        Will stop the application if required environment variables are missing
        """

        load_dotenv(find_dotenv())
        self.MONGO_URI = os.getenv("MONGO_URI")
        self.HF_TOKEN = os.getenv("HF_TOKEN")

        if not self.MONGO_URI or not self.HF_TOKEN:
            st.error("Please ensure MONGO_URI and HF_TOKEN are set in your .env file")
            st.stop()

        # MongoDB configuration.
        self.DB_NAME = "files"
        self.COLLECTION_NAME = "files_collection"
        self.VECTOR_SEARCH_INDEX = "vector_index"

    def setup_mongodb(self) -> None:
        """
        Parameters
        ----------
        None

        Output
        ------
        None

        Purpose
        -------
        Initializes the MongoDB connection and sets up the collection.

        Assumptions
        -----------
        - Valid MongoDB URI is available
        - Database and collection exist in MongoDB Atlas

        Notes
        -----
        Uses st.cache_resource for efficient connection management
        """

        @st.cache_resource
        def init_mongodb() -> Collection:
            cluster = MongoClient(self.MONGO_URI)
            return cluster[self.DB_NAME][self.COLLECTION_NAME]

        self.mongodb_collection = init_mongodb()

    def setup_embedding_model(self) -> None:
        """
        Parameters
        ----------
        None

        Output
        ------
        None

        Purpose
        -------
        Initializes the embedding model for vector search.

        Assumptions
        -----------
        - Valid Hugging Face API token
        - Internet connection to access the model

        Notes
        -----
        Uses the all-mpnet-base-v2 model from sentence-transformers
        """

        @st.cache_resource
        def init_embedding_model() -> HuggingFaceInferenceAPIEmbeddings:
            return HuggingFaceInferenceAPIEmbeddings(
                api_key=self.HF_TOKEN,
                model_name="sentence-transformers/all-mpnet-base-v2",
            )

        self.embedding_model = init_embedding_model()

    def setup_vector_search(self) -> None:
        """
        Parameters
        ----------
        None

        Output
        ------
        None

        Purpose
        -------
        Sets up the vector search functionality using MongoDB Atlas.

        Assumptions
        -----------
        - MongoDB Atlas vector search index is properly configured
        - Valid embedding model is initialized

        Notes
        -----
        Creates a retriever with similarity search and score threshold
        """

        @st.cache_resource
        def init_vector_search() -> MongoDBAtlasVectorSearch:
            return MongoDBAtlasVectorSearch.from_connection_string(
                connection_string=self.MONGO_URI,
                namespace=f"{self.DB_NAME}.{self.COLLECTION_NAME}",
                embedding=self.embedding_model,
                index_name=self.VECTOR_SEARCH_INDEX,
            )

        self.vector_search = init_vector_search()
        self.retriever = self.vector_search.as_retriever(
            search_type="similarity", search_kwargs={"k": 10, "score_threshold": 0.85}
        )

    def format_docs(self, docs: list[Document]) -> str:
        """
        Parameters
        ----------
        **docs:** list[Document] - List of documents to be formatted

        Output
        ------
        str: Formatted string containing concatenated document content

        Purpose
        -------
        Formats the retrieved documents into a single string for processing

        Assumptions
        -----------
        Documents have page_content attribute

        Notes
        -----
        Joins documents with double newlines for better readability
        """

        return "\n\n".join(doc.page_content for doc in docs)

    def generate_response(self, input_dict: Dict[str, Any]) -> str:
        """
        Parameters
        ----------
        **input_dict:** Dict[str, Any] - Dictionary containing context and question

        Output
        ------
        str: Generated response from the model

        Purpose
        -------
        Generates a response using the Hugging Face model based on context and question

        Assumptions
        -----------
        - Valid Hugging Face API token
        - Input dictionary contains 'context' and 'question' keys

        Notes
        -----
        Uses Qwen2.5-1.5B-Instruct model with controlled temperature
        """
        hf_client = InferenceClient(api_key=self.HF_TOKEN)
        formatted_prompt = self.prompt.format(**input_dict)

        response = hf_client.chat.completions.create(
            model="Qwen/Qwen2.5-1.5B-Instruct",
            messages=[
                {"role": "system", "content": formatted_prompt},
                {"role": "user", "content": input_dict["question"]},
            ],
            max_tokens=1000,
            temperature=0.2,
        )

        return response.choices[0].message.content

    def setup_rag_chain(self) -> None:
        """
        Parameters
        ----------
        None

        Output
        ------
        None

        Purpose
        -------
        Sets up the RAG chain for processing questions and generating answers

        Assumptions
        -----------
        Retriever and response generator are properly initialized

        Notes
        -----
        Creates a chain that combines retrieval and response generation
        """

        self.prompt = PromptTemplate.from_template(
            """Use the following pieces of context to answer the question at the end.

            START OF CONTEXT:
            {context}
            END OF CONTEXT:
            
            START OF QUESTION:
            {question}
            END OF QUESTION:

            If you do not know the answer, just say that you do not know.
            NEVER assume things.
            """
        )

        self.rag_chain = {
            "context": self.retriever | RunnableLambda(self.format_docs),
            "question": RunnablePassthrough(),
        } | RunnableLambda(self.generate_response)

    def process_question(self, question: str) -> str:
        """
        Parameters
        ----------
        **question:** str - The user's question to be answered

        Output
        ------
        str: The generated answer to the question

        Purpose
        -------
        Processes a user question through the RAG chain and returns an answer

        Assumptions
        -----------
        - Question is a non-empty string
        - RAG chain is properly initialized

        Notes
        -----
        Main interface for question-answering functionality
        """

        return self.rag_chain.invoke(question)


#############################################################################################################################
def setup_streamlit_ui() -> None:
    """
    Parameters
    ----------
    None

    Output
    ------
    None

    Purpose
    -------
    Sets up the Streamlit user interface with proper styling and layout

    Assumptions
    -----------
    - CSS file exists at ./static/styles/style.css
    - Image file exists at ./static/images/ctp.png

    Notes
    -----
    Handles all UI-related setup and styling
    """

    st.set_page_config(page_title="RAG Question Answering", page_icon="🤖")

    # Load CSS.
    with open("./static/styles/style.css") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

    # Title and subtitles.
    st.markdown(
        '<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">RAG Question Answering</h1>',
        unsafe_allow_html=True,
    )
    st.markdown(
        '<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">Using Documents and Research</h3>',
        unsafe_allow_html=True,
    )
    st.markdown(
        '<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">Digital Detectives: AI VS Real Images</h2>',
        unsafe_allow_html=True,
    )

    # Display logo.
    left_co, cent_co, last_co = st.columns(3)
    with cent_co:
        st.image("./static/images/poster.jpg")


#############################################################################################################################


def main():
    """
    Parameters
    ----------
    None

    Output
    ------
    None

    Purpose
    -------
    Main function that runs the Streamlit application

    Assumptions
    -----------
    All required environment variables and files are present

    Notes
    -----
    Entry point for the application
    """

    # Setup UI.
    setup_streamlit_ui()

    # Initialize RAG system.
    rag_system = RAGQuestionAnswering()

    # Create input elements.
    query = st.text_input("Question:", key="question_input")

    # Handle submission.
    if st.button("Submit", type="primary"):
        if query:
            with st.spinner("Generating response..."):
                response = rag_system.process_question(query)
                st.text_area("Answer:", value=response, height=200, disabled=True)
        else:
            st.warning("Please enter a question.")

    # Add GitHub link.
    st.markdown(
        """
        <p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
        <b>Check out our <a href="https://github.com/KeiraJames/CTP-Project-2024/tree/main" style="color: #FAF9F6;">GitHub repository</a></b>
        </p>
        """,
        unsafe_allow_html=True,
    )


#############################################################################################################################
if __name__ == "__main__":
    main()