File size: 5,898 Bytes
6e9cc55 f6eb1bd 6e9cc55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
#RAG Code written by Farhikhta Farzan
#MONGODB created by Farhikhta Farzan
#Documents and research gathered by Keira James, Farhikhta Farzan, and Tesneem Essa
# Import libraries.
# Gradio.
import gradio as gr
# File loading and environment variables.
import os
import sys
# Gradio.
from gradio.themes.base import Base
# HuggingFace LLM.
from huggingface_hub import InferenceClient
# Langchain.
from langchain.document_loaders import TextLoader
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
# MongoDB.
from pymongo import MongoClient
# Function type hints.
from typing import Dict, Any
#Secrets
from kaggle_secrets import UserSecretsClient
directory_path = "/kaggle/input/rag-dataset/RAG"
sys.path.append(directory_path)
print("sys.path =", sys.path)
my_txts = os.listdir(directory_path)
my_txts
loaders = []
for my_txt in my_txts:
my_txt_path = os.path.join(directory_path, my_txt)
text_loader = TextLoader(my_txt_path)
loaders.append(text_loader)
print("len(loaders) =", len(loaders))
loaders
# Load the TXT.
data = []
for loader in loaders:
loaded_text = loader.load()
data.append(loaded_text)
print("len(data) =", len(data), "\n")
# First TXT file.
data[0]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = []
for doc in data:
chunk = text_splitter.split_documents(doc)
docs.append(chunk)
merged_documents = []
for doc in docs:
merged_documents.extend(doc)
# Print the merged list of all the documents.
print("len(merged_documents) =", len(merged_documents))
print(merged_documents)
# Connect to MongoDB Atlas cluster using the connection string.
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
# secret_value_0= user_secrets.get_secret("MONGO_URI")
MONGO_URI = user_secrets.get_secret("MONGO_URI")
cluster = MongoClient(MONGO_URI)
# Define the MongoDB database and collection name.
DB_NAME = "files"
COLLECTION_NAME = "files_collection"
# Connect to the specific collection in the database.
MONGODB_COLLECTION = cluster[DB_NAME][COLLECTION_NAME]
vector_search_index = "vector_index"
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
HF_TOKEN = user_secrets.get_secret("hugging_face")
embedding_model = HuggingFaceInferenceAPIEmbeddings(
api_key=HF_TOKEN, model_name="sentence-transformers/all-mpnet-base-v2"
)
# #populated mongo_db
# vector_search = MongoDBAtlasVectorSearch.from_documents(
# documents=merged_documents,
# embedding=embedding_model,
# collection=MONGODB_COLLECTION,
# index_name=vector_search_index
# )
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
connection_string=MONGO_URI,
namespace=f"{DB_NAME}.{COLLECTION_NAME}",
embedding=embedding_model,
index_name=vector_search_index,
)
query = "why EfficientNetB0?"
results = vector_search.similarity_search(query=query, k=25) # 25 most similar documents.
print("\n")
print(results)
# k to search for only the X most relevant documents.
k = 10
# score_threshold to use only documents with a relevance score above 0.80.
score_threshold = 0.80
# Build your retriever
retriever_1 = vector_search.as_retriever(
search_type = "similarity", # similarity, mmr, similarity_score_threshold. https://api.python.langchain.com/en/latest/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever
search_kwargs = {"k": k, "score_threshold": score_threshold}
)
# Initialize Hugging Face client
hf_client = InferenceClient(api_key=HF_TOKEN)
# Define the prompt template
prompt = PromptTemplate.from_template(
"""Use the following pieces of context to answer the question at the end.
START OF CONTEXT:
{context}
END OF CONTEXT:
START OF QUESTION:
{question}
END OF QUESTION:
If you do not know the answer, just say that you do not know.
NEVER assume things.
"""
)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
def generate_response(input_dict: Dict[str, Any]) -> str:
formatted_prompt = prompt.format(**input_dict)
# print(formatted_prompt)
## THIS IS YOUR LLM
response = hf_client.chat.completions.create(
model="Qwen/Qwen2.5-1.5B-Instruct",
messages=[{
"role": "system",
"content": formatted_prompt
},{
"role": "user",
"content": input_dict["question"]
}],
max_tokens=1000,
temperature=0.2,
)
return response.choices[0].message.content
rag_chain = (
{
"context": retriever_1 | RunnableLambda(format_docs),
"question": RunnablePassthrough()
}
| RunnableLambda(generate_response)
)
query = "what is scaling?"
answer = rag_chain.invoke(query)
print("\nQuestion:", query)
print("Answer:", answer)
# Get source documents related to the query.
documents = retriever_1.invoke(query)
# print("\nSource documents:")
# from pprint import pprint
# pprint(results)
query = "How the GUI was implemented?"
answer = rag_chain.invoke(query)
print("\nQuestion:", query)
print("Answer:", answer)
# Get source documents related to the query.
documents = retriever_1.invoke(query)
print("\nSource documents:")
from pprint import pprint
pprint(results)
query = "How the GUI was implemented?"
answer = rag_chain.invoke(query)
print("\nQuestion:", query)
print("Answer:", answer)
# Get source documents related to the query.
documents = retriever_1.invoke(query)
formatted_docs = format_docs(documents)
print("\nSource Documents:\n", formatted_docs) |