File size: 2,569 Bytes
c924850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Author     : Georgios Ioannou
#
# Copyright © 2024 by Georgios Ioannou

# Setting Up MongoDB with Atlas Vector Search

## Initial Setup
1. Create and log in to your MongoDB account at [mongodb.com](https://mongodb.com)

2. Create Organization and Project
   - Create a new MongoDB organization
   - Name your organization as desired
   - Create a new MongoDB project
   - Name your project as desired

3. Create Cluster
   - Select M0 (FREE) tier
   - Wait 1-3 minutes for cluster creation

## Security Setup
4. Create Database User
   - Create username and password
   - **Important**: Save these credentials securely

5. Configure Network Access
   - Navigate on the left menu to Security -> Network Access
   - Add IP Address: `0.0.0.0/0` (Allows access from anywhere)

## Database Creation
6. Set Up Database and Collection
   - Click "Browse Collections"
   - Click "Add My Own Data"
   - Create database (e.g., "txts")
   - Create collection (e.g., "txts_collection")

   - Click "Create"



## Vector Search Configuration

7. Create Vector Search Index

   - Click "Search Indexes" (This will bring you to "Atlas Search" tab)

   - Click "Create Search Index"

   - Select "JSON Editor" under "Atlas Vector Search"

   - Click "Next"

   - Configure index settings:

     ```json

     {

       "name": "vector_index", // Adjust it to your desired name.
       "type": "vector",

       "path": "embedding", // Adjust it to your index/embedding column.

       "numDimensions": 384,  // Adjust based on your model. (e.g., 384 for all-MiniLM-l6-v2)

       "similarity": "euclidean" // Adjust it to your desired similarity function.

     }

     ```

   - Optional: Add filter fields if needed:

     ```json

     {

       "type": "filter",

       "path": "source" // Adjust it to the column you would like to filter with.

     }

     ```

   - Assign your index to the collection name created in step 6 using the drop down menu on the left.

   - Click "Next"

   - Click "Create Search Index"

   - Wait for status to change from "Pending" to "Active"


**Note**: While vector search index creation can be done programmatically, the GUI method described above is recommended for simplicity.

## Connection String
8. Get Your MongoDB URI
   - Click "Clusters" under DATABASE on the left menu
   - Click "Connect" next to name of your cluster
   - Select "Drivers"
   - Copy the connection/MongoURI string at the very end of the modal that just opened
   - Replace `<password>` with your database user password