File size: 12,530 Bytes
0b00252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
#############################################################################################################################
# Filename : app.py
# Description: A Streamlit application to showcase how RAG works.
# Author : Georgios Ioannou
#
# Copyright © 2024 by Georgios Ioannou
#############################################################################################################################
# Import libraries.
import os
import streamlit as st
from dotenv import load_dotenv, find_dotenv
from huggingface_hub import InferenceClient
from langchain.prompts import PromptTemplate
from langchain.schema import Document
from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from pymongo.collection import Collection
from typing import Dict, Any
#############################################################################################################################
class RAGQuestionAnswering:
def __init__(self):
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Initializes the RAG Question Answering system by setting up configuration
and loading environment variables.
Assumptions
-----------
- Expects .env file with MONGO_URI and HF_TOKEN
- Requires proper MongoDB setup with vector search index
- Needs connection to Hugging Face API
Notes
-----
This is the main class that handles all RAG operations
"""
self.load_environment()
self.setup_mongodb()
self.setup_embedding_model()
self.setup_vector_search()
self.setup_rag_chain()
def load_environment(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Loads environment variables from .env file and sets up configuration constants.
Assumptions
-----------
Expects a .env file with MONGO_URI and HF_TOKEN defined
Notes
-----
Will stop the application if required environment variables are missing
"""
load_dotenv(find_dotenv())
self.MONGO_URI = os.getenv("MONGO_URI")
self.HF_TOKEN = os.getenv("HF_TOKEN")
if not self.MONGO_URI or not self.HF_TOKEN:
st.error("Please ensure MONGO_URI and HF_TOKEN are set in your .env file")
st.stop()
# MongoDB configuration.
self.DB_NAME = "txts"
self.COLLECTION_NAME = "txts_collection"
self.VECTOR_SEARCH_INDEX = "vector_index"
def setup_mongodb(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Initializes the MongoDB connection and sets up the collection.
Assumptions
-----------
- Valid MongoDB URI is available
- Database and collection exist in MongoDB Atlas
Notes
-----
Uses st.cache_resource for efficient connection management
"""
@st.cache_resource
def init_mongodb() -> Collection:
cluster = MongoClient(self.MONGO_URI)
return cluster[self.DB_NAME][self.COLLECTION_NAME]
self.mongodb_collection = init_mongodb()
def setup_embedding_model(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Initializes the embedding model for vector search.
Assumptions
-----------
- Valid Hugging Face API token
- Internet connection to access the model
Notes
-----
Uses the all-mpnet-base-v2 model from sentence-transformers
"""
@st.cache_resource
def init_embedding_model() -> HuggingFaceInferenceAPIEmbeddings:
return HuggingFaceInferenceAPIEmbeddings(
api_key=self.HF_TOKEN,
model_name="sentence-transformers/all-mpnet-base-v2",
)
self.embedding_model = init_embedding_model()
def setup_vector_search(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Sets up the vector search functionality using MongoDB Atlas.
Assumptions
-----------
- MongoDB Atlas vector search index is properly configured
- Valid embedding model is initialized
Notes
-----
Creates a retriever with similarity search and score threshold
"""
@st.cache_resource
def init_vector_search() -> MongoDBAtlasVectorSearch:
return MongoDBAtlasVectorSearch.from_connection_string(
connection_string=self.MONGO_URI,
namespace=f"{self.DB_NAME}.{self.COLLECTION_NAME}",
embedding=self.embedding_model,
index_name=self.VECTOR_SEARCH_INDEX,
)
self.vector_search = init_vector_search()
self.retriever = self.vector_search.as_retriever(
search_type="similarity", search_kwargs={"k": 10, "score_threshold": 0.85}
)
def format_docs(self, docs: list[Document]) -> str:
"""
Parameters
----------
**docs:** list[Document] - List of documents to be formatted
Output
------
str: Formatted string containing concatenated document content
Purpose
-------
Formats the retrieved documents into a single string for processing
Assumptions
-----------
Documents have page_content attribute
Notes
-----
Joins documents with double newlines for better readability
"""
return "\n\n".join(doc.page_content for doc in docs)
def generate_response(self, input_dict: Dict[str, Any]) -> str:
"""
Parameters
----------
**input_dict:** Dict[str, Any] - Dictionary containing context and question
Output
------
str: Generated response from the model
Purpose
-------
Generates a response using the Hugging Face model based on context and question
Assumptions
-----------
- Valid Hugging Face API token
- Input dictionary contains 'context' and 'question' keys
Notes
-----
Uses Qwen2.5-1.5B-Instruct model with controlled temperature
"""
hf_client = InferenceClient(api_key=self.HF_TOKEN)
formatted_prompt = self.prompt.format(**input_dict)
response = hf_client.chat.completions.create(
model="Qwen/Qwen2.5-1.5B-Instruct",
messages=[
{"role": "system", "content": formatted_prompt},
{"role": "user", "content": input_dict["question"]},
],
max_tokens=1000,
temperature=0.2,
)
return response.choices[0].message.content
def setup_rag_chain(self) -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Sets up the RAG chain for processing questions and generating answers
Assumptions
-----------
Retriever and response generator are properly initialized
Notes
-----
Creates a chain that combines retrieval and response generation
"""
self.prompt = PromptTemplate.from_template(
"""Use the following pieces of context to answer the question at the end.
START OF CONTEXT:
{context}
END OF CONTEXT:
START OF QUESTION:
{question}
END OF QUESTION:
If you do not know the answer, just say that you do not know.
NEVER assume things.
"""
)
self.rag_chain = {
"context": self.retriever | RunnableLambda(self.format_docs),
"question": RunnablePassthrough(),
} | RunnableLambda(self.generate_response)
def process_question(self, question: str) -> str:
"""
Parameters
----------
**question:** str - The user's question to be answered
Output
------
str: The generated answer to the question
Purpose
-------
Processes a user question through the RAG chain and returns an answer
Assumptions
-----------
- Question is a non-empty string
- RAG chain is properly initialized
Notes
-----
Main interface for question-answering functionality
"""
return self.rag_chain.invoke(question)
#############################################################################################################################
def setup_streamlit_ui() -> None:
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Sets up the Streamlit user interface with proper styling and layout
Assumptions
-----------
- CSS file exists at ./static/styles/style.css
- Image file exists at ./static/images/ctp.png
Notes
-----
Handles all UI-related setup and styling
"""
st.set_page_config(page_title="RAG Question Answering", page_icon="🤖")
# Load CSS.
with open("./static/styles/style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
# Title and subtitles.
st.markdown(
'<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">RAG Question Answering</h1>',
unsafe_allow_html=True,
)
st.markdown(
'<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">Using Zoom Closed Captioning From The Lectures</h3>',
unsafe_allow_html=True,
)
st.markdown(
'<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">CUNY Tech Prep Tutorial 5</h2>',
unsafe_allow_html=True,
)
# Display logo.
left_co, cent_co, last_co = st.columns(3)
with cent_co:
st.image("./static/images/ctp.png")
#############################################################################################################################
def main():
"""
Parameters
----------
None
Output
------
None
Purpose
-------
Main function that runs the Streamlit application
Assumptions
-----------
All required environment variables and files are present
Notes
-----
Entry point for the application
"""
# Setup UI.
setup_streamlit_ui()
# Initialize RAG system.
rag_system = RAGQuestionAnswering()
# Create input elements.
query = st.text_input("Question:", key="question_input")
# Handle submission.
if st.button("Submit", type="primary"):
if query:
with st.spinner("Generating response..."):
response = rag_system.process_question(query)
st.text_area("Answer:", value=response, height=200, disabled=True)
else:
st.warning("Please enter a question.")
# Add GitHub link.
st.markdown(
"""
<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
<b>Check out our <a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;">GitHub repository</a></b>
</p>
""",
unsafe_allow_html=True,
)
#############################################################################################################################
if __name__ == "__main__":
main()
|