Spaces:
Build error
Build error
import os | |
import sys | |
import json | |
import torch | |
import gradio as gr | |
import torchaudio | |
import numpy as np | |
from huggingface_hub import snapshot_download, hf_hub_download | |
import subprocess | |
# 克隆Amphion仓库 | |
if not os.path.exists("Amphion"): | |
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"]) | |
os.chdir("Amphion") | |
else: | |
if not os.getcwd().endswith("Amphion"): | |
os.chdir("Amphion") | |
# 将Amphion加入到路径中 | |
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path: | |
sys.path.append(os.path.dirname(os.path.abspath("Amphion"))) | |
# 确保需要的目录存在 | |
os.makedirs("wav", exist_ok=True) | |
os.makedirs("ckpts/Vevo", exist_ok=True) | |
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav | |
# 下载和设置配置文件 | |
def setup_configs(): | |
config_path = "models/vc/vevo/config" | |
os.makedirs(config_path, exist_ok=True) | |
config_files = [ | |
"PhoneToVq8192.json", | |
"Vocoder.json", | |
"Vq32ToVq8192.json", | |
"Vq8192ToMels.json", | |
"hubert_large_l18_c32.yaml", | |
] | |
for file in config_files: | |
file_path = f"{config_path}/{file}" | |
if not os.path.exists(file_path): | |
try: | |
file_data = hf_hub_download( | |
repo_id="amphion/Vevo", | |
filename=f"config/{file}", | |
repo_type="model", | |
) | |
os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
# 拷贝文件到目标位置 | |
subprocess.run(["cp", file_data, file_path]) | |
except Exception as e: | |
print(f"下载配置文件 {file} 时出错: {e}") | |
setup_configs() | |
# 设备配置 | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
print(f"使用设备: {device}") | |
# 初始化管道字典 | |
inference_pipelines = {} | |
def get_pipeline(pipeline_type): | |
if pipeline_type in inference_pipelines: | |
return inference_pipelines[pipeline_type] | |
# 根据需要的管道类型初始化 | |
if pipeline_type == "style" or pipeline_type == "voice": | |
# 下载Content Tokenizer | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["tokenizer/vq32/*"], | |
) | |
content_tokenizer_ckpt_path = os.path.join( | |
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl" | |
) | |
# 下载Content-Style Tokenizer | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["tokenizer/vq8192/*"], | |
) | |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192") | |
# 下载Autoregressive Transformer | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"], | |
) | |
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json" | |
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192") | |
# 下载Flow Matching Transformer | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"], | |
) | |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json" | |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels") | |
# 下载Vocoder | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["acoustic_modeling/Vocoder/*"], | |
) | |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json" | |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder") | |
# 初始化管道 | |
inference_pipeline = VevoInferencePipeline( | |
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path, | |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path, | |
ar_cfg_path=ar_cfg_path, | |
ar_ckpt_path=ar_ckpt_path, | |
fmt_cfg_path=fmt_cfg_path, | |
fmt_ckpt_path=fmt_ckpt_path, | |
vocoder_cfg_path=vocoder_cfg_path, | |
vocoder_ckpt_path=vocoder_ckpt_path, | |
device=device, | |
) | |
elif pipeline_type == "timbre": | |
# 下载Content-Style Tokenizer (仅timbre需要) | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["tokenizer/vq8192/*"], | |
) | |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192") | |
# 下载Flow Matching Transformer | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"], | |
) | |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json" | |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels") | |
# 下载Vocoder | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["acoustic_modeling/Vocoder/*"], | |
) | |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json" | |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder") | |
# 初始化管道 | |
inference_pipeline = VevoInferencePipeline( | |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path, | |
fmt_cfg_path=fmt_cfg_path, | |
fmt_ckpt_path=fmt_ckpt_path, | |
vocoder_cfg_path=vocoder_cfg_path, | |
vocoder_ckpt_path=vocoder_ckpt_path, | |
device=device, | |
) | |
elif pipeline_type == "tts": | |
# 下载Content-Style Tokenizer | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["tokenizer/vq8192/*"], | |
) | |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192") | |
# 下载Autoregressive Transformer (TTS特有) | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"], | |
) | |
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json" | |
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192") | |
# 下载Flow Matching Transformer | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"], | |
) | |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json" | |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels") | |
# 下载Vocoder | |
local_dir = snapshot_download( | |
repo_id="amphion/Vevo", | |
repo_type="model", | |
cache_dir="./ckpts/Vevo", | |
allow_patterns=["acoustic_modeling/Vocoder/*"], | |
) | |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json" | |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder") | |
# 初始化管道 | |
inference_pipeline = VevoInferencePipeline( | |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path, | |
ar_cfg_path=ar_cfg_path, | |
ar_ckpt_path=ar_ckpt_path, | |
fmt_cfg_path=fmt_cfg_path, | |
fmt_ckpt_path=fmt_ckpt_path, | |
vocoder_cfg_path=vocoder_cfg_path, | |
vocoder_ckpt_path=vocoder_ckpt_path, | |
device=device, | |
) | |
# 缓存管道实例 | |
inference_pipelines[pipeline_type] = inference_pipeline | |
return inference_pipeline | |
# 实现VEVO功能函数 | |
def vevo_style(content_wav, style_wav): | |
temp_content_path = "wav/temp_content.wav" | |
temp_style_path = "wav/temp_style.wav" | |
output_path = "wav/output_vevostyle.wav" | |
# 检查并处理音频数据 | |
if content_wav is None or style_wav is None: | |
raise ValueError("Please upload audio files") | |
# 处理音频格式 | |
if isinstance(content_wav, tuple) and len(content_wav) == 2: | |
if isinstance(content_wav[0], np.ndarray): | |
content_data, content_sr = content_wav | |
else: | |
content_sr, content_data = content_wav | |
# 确保是单声道 | |
if len(content_data.shape) > 1 and content_data.shape[1] > 1: | |
content_data = np.mean(content_data, axis=1) | |
# 重采样到24kHz | |
if content_sr != 24000: | |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0) | |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000) | |
content_sr = 24000 | |
else: | |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0) | |
# 归一化音量 | |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95 | |
else: | |
raise ValueError("Invalid content audio format") | |
if isinstance(style_wav, tuple) and len(style_wav) == 2: | |
# 确保正确的顺序 (data, sample_rate) | |
if isinstance(style_wav[0], np.ndarray): | |
style_data, style_sr = style_wav | |
else: | |
style_sr, style_data = style_wav | |
style_tensor = torch.FloatTensor(style_data) | |
if style_tensor.ndim == 1: | |
style_tensor = style_tensor.unsqueeze(0) # 添加通道维度 | |
else: | |
raise ValueError("Invalid style audio format") | |
# 打印debug信息 | |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}") | |
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}") | |
# 保存音频 | |
torchaudio.save(temp_content_path, content_tensor, content_sr) | |
torchaudio.save(temp_style_path, style_tensor, style_sr) | |
try: | |
# 获取管道 | |
pipeline = get_pipeline("style") | |
# 推理 | |
gen_audio = pipeline.inference_ar_and_fm( | |
src_wav_path=temp_content_path, | |
src_text=None, | |
style_ref_wav_path=temp_style_path, | |
timbre_ref_wav_path=temp_content_path, | |
) | |
# 检查生成音频是否为数值异常 | |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any(): | |
print("Warning: Generated audio contains NaN or Inf values") | |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95) | |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}") | |
# 保存生成的音频 | |
save_audio(gen_audio, output_path=output_path) | |
return output_path | |
except Exception as e: | |
print(f"Error during processing: {e}") | |
import traceback | |
traceback.print_exc() | |
raise e | |
def vevo_timbre(content_wav, reference_wav): | |
temp_content_path = "wav/temp_content.wav" | |
temp_reference_path = "wav/temp_reference.wav" | |
output_path = "wav/output_vevotimbre.wav" | |
# 检查并处理音频数据 | |
if content_wav is None or reference_wav is None: | |
raise ValueError("Please upload audio files") | |
# 处理内容音频格式 | |
if isinstance(content_wav, tuple) and len(content_wav) == 2: | |
if isinstance(content_wav[0], np.ndarray): | |
content_data, content_sr = content_wav | |
else: | |
content_sr, content_data = content_wav | |
# 确保是单声道 | |
if len(content_data.shape) > 1 and content_data.shape[1] > 1: | |
content_data = np.mean(content_data, axis=1) | |
# 重采样到24kHz | |
if content_sr != 24000: | |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0) | |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000) | |
content_sr = 24000 | |
else: | |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0) | |
# 归一化音量 | |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95 | |
else: | |
raise ValueError("Invalid content audio format") | |
# 处理参考音频格式 | |
if isinstance(reference_wav, tuple) and len(reference_wav) == 2: | |
if isinstance(reference_wav[0], np.ndarray): | |
reference_data, reference_sr = reference_wav | |
else: | |
reference_sr, reference_data = reference_wav | |
# 确保是单声道 | |
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1: | |
reference_data = np.mean(reference_data, axis=1) | |
# 重采样到24kHz | |
if reference_sr != 24000: | |
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0) | |
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000) | |
reference_sr = 24000 | |
else: | |
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0) | |
# 归一化音量 | |
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95 | |
else: | |
raise ValueError("Invalid reference audio format") | |
# 打印debug信息 | |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}") | |
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}") | |
# 保存上传的音频 | |
torchaudio.save(temp_content_path, content_tensor, content_sr) | |
torchaudio.save(temp_reference_path, reference_tensor, reference_sr) | |
try: | |
# 获取管道 | |
pipeline = get_pipeline("timbre") | |
# 推理 | |
gen_audio = pipeline.inference_fm( | |
src_wav_path=temp_content_path, | |
timbre_ref_wav_path=temp_reference_path, | |
flow_matching_steps=32, | |
) | |
# 检查生成音频是否为数值异常 | |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any(): | |
print("Warning: Generated audio contains NaN or Inf values") | |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95) | |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}") | |
# 保存生成的音频 | |
save_audio(gen_audio, output_path=output_path) | |
return output_path | |
except Exception as e: | |
print(f"Error during processing: {e}") | |
import traceback | |
traceback.print_exc() | |
raise e | |
def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav): | |
temp_content_path = "wav/temp_content.wav" | |
temp_style_path = "wav/temp_style.wav" | |
temp_timbre_path = "wav/temp_timbre.wav" | |
output_path = "wav/output_vevovoice.wav" | |
# 检查并处理音频数据 | |
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None: | |
raise ValueError("Please upload all required audio files") | |
# 处理内容音频格式 | |
if isinstance(content_wav, tuple) and len(content_wav) == 2: | |
if isinstance(content_wav[0], np.ndarray): | |
content_data, content_sr = content_wav | |
else: | |
content_sr, content_data = content_wav | |
# 确保是单声道 | |
if len(content_data.shape) > 1 and content_data.shape[1] > 1: | |
content_data = np.mean(content_data, axis=1) | |
# 重采样到24kHz | |
if content_sr != 24000: | |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0) | |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000) | |
content_sr = 24000 | |
else: | |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0) | |
# 归一化音量 | |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95 | |
else: | |
raise ValueError("Invalid content audio format") | |
# 处理风格参考音频格式 | |
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2: | |
if isinstance(style_reference_wav[0], np.ndarray): | |
style_data, style_sr = style_reference_wav | |
else: | |
style_sr, style_data = style_reference_wav | |
# 确保是单声道 | |
if len(style_data.shape) > 1 and style_data.shape[1] > 1: | |
style_data = np.mean(style_data, axis=1) | |
# 重采样到24kHz | |
if style_sr != 24000: | |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0) | |
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000) | |
style_sr = 24000 | |
else: | |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0) | |
# 归一化音量 | |
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95 | |
else: | |
raise ValueError("Invalid style reference audio format") | |
# 处理音色参考音频格式 | |
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2: | |
if isinstance(timbre_reference_wav[0], np.ndarray): | |
timbre_data, timbre_sr = timbre_reference_wav | |
else: | |
timbre_sr, timbre_data = timbre_reference_wav | |
# 确保是单声道 | |
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1: | |
timbre_data = np.mean(timbre_data, axis=1) | |
# 重采样到24kHz | |
if timbre_sr != 24000: | |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0) | |
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000) | |
timbre_sr = 24000 | |
else: | |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0) | |
# 归一化音量 | |
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95 | |
else: | |
raise ValueError("Invalid timbre reference audio format") | |
# 打印debug信息 | |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}") | |
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}") | |
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}") | |
# 保存上传的音频 | |
torchaudio.save(temp_content_path, content_tensor, content_sr) | |
torchaudio.save(temp_style_path, style_tensor, style_sr) | |
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr) | |
try: | |
# 获取管道 | |
pipeline = get_pipeline("voice") | |
# 推理 | |
gen_audio = pipeline.inference_ar_and_fm( | |
src_wav_path=temp_content_path, | |
src_text=None, | |
style_ref_wav_path=temp_style_path, | |
timbre_ref_wav_path=temp_timbre_path, | |
) | |
# 检查生成音频是否为数值异常 | |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any(): | |
print("Warning: Generated audio contains NaN or Inf values") | |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95) | |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}") | |
# 保存生成的音频 | |
save_audio(gen_audio, output_path=output_path) | |
return output_path | |
except Exception as e: | |
print(f"Error during processing: {e}") | |
import traceback | |
traceback.print_exc() | |
raise e | |
def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en"): | |
temp_ref_path = "wav/temp_ref.wav" | |
temp_timbre_path = "wav/temp_timbre.wav" | |
output_path = "wav/output_vevotts.wav" | |
# 检查并处理音频数据 | |
if ref_wav is None: | |
raise ValueError("Please upload a reference audio file") | |
# 处理参考音频格式 | |
if isinstance(ref_wav, tuple) and len(ref_wav) == 2: | |
if isinstance(ref_wav[0], np.ndarray): | |
ref_data, ref_sr = ref_wav | |
else: | |
ref_sr, ref_data = ref_wav | |
# 确保是单声道 | |
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1: | |
ref_data = np.mean(ref_data, axis=1) | |
# 重采样到24kHz | |
if ref_sr != 24000: | |
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0) | |
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000) | |
ref_sr = 24000 | |
else: | |
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0) | |
# 归一化音量 | |
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95 | |
else: | |
raise ValueError("Invalid reference audio format") | |
# 打印debug信息 | |
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}") | |
if style_ref_text: | |
print(f"Style reference text: {style_ref_text}") | |
# 保存上传的音频 | |
torchaudio.save(temp_ref_path, ref_tensor, ref_sr) | |
if timbre_ref_wav is not None: | |
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2: | |
if isinstance(timbre_ref_wav[0], np.ndarray): | |
timbre_data, timbre_sr = timbre_ref_wav | |
else: | |
timbre_sr, timbre_data = timbre_ref_wav | |
# 确保是单声道 | |
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1: | |
timbre_data = np.mean(timbre_data, axis=1) | |
# 重采样到24kHz | |
if timbre_sr != 24000: | |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0) | |
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000) | |
timbre_sr = 24000 | |
else: | |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0) | |
# 归一化音量 | |
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95 | |
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}") | |
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr) | |
else: | |
raise ValueError("Invalid timbre reference audio format") | |
else: | |
temp_timbre_path = temp_ref_path | |
try: | |
# 获取管道 | |
pipeline = get_pipeline("tts") | |
# 推理 | |
gen_audio = pipeline.inference_ar_and_fm( | |
src_wav_path=None, | |
src_text=text, | |
style_ref_wav_path=temp_ref_path, | |
timbre_ref_wav_path=temp_timbre_path, | |
style_ref_wav_text=style_ref_text, | |
src_text_language=src_language, | |
style_ref_wav_text_language=ref_language, | |
) | |
# 检查生成音频是否为数值异常 | |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any(): | |
print("Warning: Generated audio contains NaN or Inf values") | |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95) | |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}") | |
# 保存生成的音频 | |
save_audio(gen_audio, output_path=output_path) | |
return output_path | |
except Exception as e: | |
print(f"Error during processing: {e}") | |
import traceback | |
traceback.print_exc() | |
raise e | |
# 创建Gradio界面 | |
with gr.Blocks(title="Vevo DEMO") as demo: | |
gr.Markdown("# Vevo DEMO") | |
# 添加链接标签行 | |
with gr.Row(elem_id="links_row"): | |
gr.HTML(""" | |
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 20px 0; padding-left: 0px;"> | |
<a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;"> | |
<img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red"> | |
</a> | |
<a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;"> | |
<img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-a1c447"> | |
</a> | |
<a href="https://huggingface.co/amphion/Vevo" target="_blank" style="text-decoration: none;"> | |
<img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow"> | |
</a> | |
<a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;"> | |
<img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue"> | |
</a> | |
</div> | |
""") | |
with gr.Tab("Vevo-Timbre"): | |
gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre") | |
with gr.Row(): | |
with gr.Column(): | |
timbre_content = gr.Audio(label="Source Audio", type="numpy") | |
timbre_reference = gr.Audio(label="Timbre Reference", type="numpy") | |
timbre_button = gr.Button("Generate") | |
with gr.Column(): | |
timbre_output = gr.Audio(label="Result") | |
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output) | |
with gr.Tab("Vevo-Style"): | |
gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)") | |
with gr.Row(): | |
with gr.Column(): | |
style_content = gr.Audio(label="Source Audio", type="numpy") | |
style_reference = gr.Audio(label="Style Reference", type="numpy") | |
style_button = gr.Button("Generate") | |
with gr.Column(): | |
style_output = gr.Audio(label="Result") | |
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output) | |
with gr.Tab("Vevo-Voice"): | |
gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references") | |
with gr.Row(): | |
with gr.Column(): | |
voice_content = gr.Audio(label="Source Audio", type="numpy") | |
voice_style_reference = gr.Audio(label="Style Reference", type="numpy") | |
voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy") | |
voice_button = gr.Button("Generate") | |
with gr.Column(): | |
voice_output = gr.Audio(label="Result") | |
voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output) | |
with gr.Tab("Vevo-TTS"): | |
gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references") | |
with gr.Row(): | |
with gr.Column(): | |
tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3) | |
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en") | |
tts_reference = gr.Audio(label="Style Reference", type="numpy") | |
tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3) | |
tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy") | |
tts_ref_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Reference Audio Language", value="en") | |
tts_button = gr.Button("Generate") | |
with gr.Column(): | |
tts_output = gr.Audio(label="Result") | |
tts_button.click( | |
vevo_tts, | |
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_ref_language], | |
outputs=tts_output | |
) | |
gr.Markdown(""" | |
## About VEVO | |
VEVO is a versatile voice synthesis and conversion model that offers four main functionalities: | |
1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.) | |
2. **Vevo-Timbre**: Maintains style but transfers timbre | |
3. **Vevo-Voice**: Transfers both style and timbre with separate references | |
4. **Vevo-TTS**: Text-to-speech with separate style and timbre references | |
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion) | |
""") | |
# 启动应用 | |
demo.launch() |