KazLLM / app.py
DiDustin's picture
Update app.py
cbc4fca verified
import os
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
HF_TOKEN = os.getenv("HF_TOKEN_KAZLLM")
MODELS = {
"V-1: LLama-3.1-KazLLM-8B": {
"model_name": "issai/LLama-3.1-KazLLM-1.0-8B",
"tokenizer_name": "issai/LLama-3.1-KazLLM-1.0-8B",
"duration": 120,
"defaults": {
"max_length": 100,
"temperature": 0.7,
"top_p": 0.9,
"do_sample": True
}
},
"V-2: LLama-3.1-KazLLM-70B-AWQ4": {
"model_name": "issai/LLama-3.1-KazLLM-1.0-70B-AWQ4",
"tokenizer_name": "issai/LLama-3.1-KazLLM-1.0-70B-AWQ4",
"duration": 180,
"defaults": {
"max_length": 150,
"temperature": 0.8,
"top_p": 0.95,
"do_sample": True
}
}
}
LANGUAGES = {
"Русский": {
"title": "LLama-3.1 KazLLM с выбором модели и языка",
"description": "Выберите модель, язык интерфейса, введите запрос и получите сгенерированный текст с использованием выбранной модели LLama-3.1 KazLLM.",
"select_model": "Выберите модель",
"enter_prompt": "Введите запрос",
"max_length": "Максимальная длина текста",
"temperature": "Креативность (Температура)",
"top_p": "Top-p (ядро вероятности)",
"do_sample": "Использовать выборку (Do Sample)",
"generate_button": "Сгенерировать текст",
"generated_text": "Сгенерированный текст",
"language": "Выберите язык интерфейса"
},
"Қазақша": {
"title": "LLama-3.1 KazLLM модель таңдауы және тілін қолдау",
"description": "Модельді, интерфейс тілін таңдаңыз, сұрауыңызды енгізіңіз және таңдалған LLama-3.1 KazLLM моделін пайдаланып генерирленген мәтінді алыңыз.",
"select_model": "Модельді таңдаңыз",
"enter_prompt": "Сұрауыңызды енгізіңіз",
"max_length": "Мәтіннің максималды ұзындығы",
"temperature": "Шығармашылық (Температура)",
"top_p": "Top-p (ықтималдық негізі)",
"do_sample": "Үлгіні қолдану (Do Sample)",
"generate_button": "Мәтінді генерациялау",
"generated_text": "Генерацияланған мәтін",
"language": "Интерфейс тілін таңдаңыз"
}
}
loaded_models = {}
loaded_tokenizers = {}
@spaces.GPU(duration=60)
def load_model_and_tokenizer(model_key):
if model_key not in loaded_models:
model_info = MODELS[model_key]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(
model_info["model_name"],
token=HF_TOKEN
).to(device)
loaded_models[model_key] = model
tokenizer = AutoTokenizer.from_pretrained(
model_info["tokenizer_name"],
use_fast=True,
token=HF_TOKEN
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
loaded_tokenizers[model_key] = tokenizer
@spaces.GPU(duration=120)
def generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample):
load_model_and_tokenizer(model_choice)
model = loaded_models[model_choice]
tokenizer = loaded_tokenizers[model_choice]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True).to(device)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": max_length,
"temperature": temperature,
"repetition_penalty": 1.2,
"no_repeat_ngram_size": 2,
"do_sample": do_sample,
}
if do_sample:
generation_kwargs["top_p"] = top_p
outputs = model.generate(**generation_kwargs)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
def update_settings(model_choice):
defaults = MODELS[model_choice]["defaults"]
return (
gr.update(value=defaults["max_length"]),
gr.update(value=defaults["temperature"]),
gr.update(value=defaults["top_p"]),
gr.update(value=defaults["do_sample"])
)
def update_language(selected_language):
lang = LANGUAGES[selected_language]
return (
gr.update(value=lang["title"]),
gr.update(value=lang["description"]),
gr.update(label=lang["select_model"]),
gr.update(label=lang["enter_prompt"]),
gr.update(label=lang["max_length"]),
gr.update(label=lang["temperature"]),
gr.update(label=lang["top_p"]),
gr.update(label=lang["do_sample"]),
gr.update(value=lang["generate_button"]),
gr.update(label=lang["generated_text"])
)
@spaces.GPU(duration=120)
def wrapped_generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample):
return generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample)
with gr.Blocks() as iface:
with gr.Row():
language_dropdown = gr.Dropdown(
choices=list(LANGUAGES.keys()),
value="Русский",
label=LANGUAGES["Русский"]["language"]
)
title = gr.Markdown(LANGUAGES["Русский"]["title"])
description = gr.Markdown(LANGUAGES["Русский"]["description"])
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
value="V-2: LLama-3.1-KazLLM-70B-AWQ4",
label=LANGUAGES["Русский"]["select_model"]
)
with gr.Row():
prompt_input = gr.Textbox(
lines=4,
placeholder="Введите ваш запрос здесь...",
label=LANGUAGES["Русский"]["enter_prompt"]
)
with gr.Row():
max_length_slider = gr.Slider(
minimum=50,
maximum=1000,
step=10,
value=MODELS["V-2: LLama-3.1-KazLLM-70B-AWQ4"]["defaults"]["max_length"],
label=LANGUAGES["Русский"]["max_length"]
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=2.0,
step=0.1,
value=MODELS["V-2: LLama-3.1-KazLLM-70B-AWQ4"]["defaults"]["temperature"],
label=LANGUAGES["Русский"]["temperature"]
)
with gr.Row():
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.05,
value=MODELS["V-2: LLama-3.1-KazLLM-70B-AWQ4"]["defaults"]["top_p"],
label=LANGUAGES["Русский"]["top_p"]
)
do_sample_checkbox = gr.Checkbox(
value=MODELS["V-2: LLama-3.1-KazLLM-70B-AWQ4"]["defaults"]["do_sample"],
label=LANGUAGES["Русский"]["do_sample"]
)
generate_button = gr.Button(LANGUAGES["Русский"]["generate_button"])
output_text = gr.Textbox(
label=LANGUAGES["Русский"]["generated_text"],
lines=10
)
model_dropdown.change(
fn=update_settings,
inputs=[model_dropdown],
outputs=[max_length_slider, temperature_slider, top_p_slider, do_sample_checkbox]
)
language_dropdown.change(
fn=update_language,
inputs=[language_dropdown],
outputs=[title, description, model_dropdown, prompt_input, max_length_slider, temperature_slider, top_p_slider,
do_sample_checkbox, generate_button, output_text]
)
do_sample_checkbox.change(
fn=lambda do_sample: gr.update(visible=do_sample),
inputs=[do_sample_checkbox],
outputs=[top_p_slider]
)
generate_button.click(
fn=wrapped_generate_text,
inputs=[
model_dropdown,
prompt_input,
max_length_slider,
temperature_slider,
top_p_slider,
do_sample_checkbox
],
outputs=output_text
)
if __name__ == "__main__":
iface.launch()