Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
import pyttsx3 # Importing pyttsx3 for text-to-speech | |
# Replace 'your_huggingface_token' with your actual Hugging Face access token | |
access_token = os.getenv('token') | |
# Initialize the tokenizer and model with the Hugging Face access token | |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
"google/gemma-2b-it", | |
torch_dtype=torch.bfloat16, | |
use_auth_token=access_token | |
) | |
model.eval() # Set the model to evaluation mode | |
# Initialize the inference client (if needed for other API-based tasks) | |
client = InferenceClient(token=access_token) | |
# Initialize the text-to-speech engine | |
tts_engine = pyttsx3.init() | |
# Import required modules for E2-F5-TTS | |
from huggingface_hub import Client | |
# Initialize the E2-F5-TTS client | |
client_tts = Client("mrfakename/E2-F5-TTS") | |
def text_to_speech(text, sample): | |
result = client_tts.predict( | |
ref_audio_input=handle_file(f'input/{sample}.mp3'), | |
ref_text_input="", | |
gen_text_input=text, | |
remove_silence=False, | |
cross_fade_duration_slider=0.15, | |
speed_slider=1, | |
api_name="/basic_tts" | |
) | |
audio_file = open(result[0], "rb") | |
audio_bytes = audio_file.read() | |
return audio_bytes | |
def conversation_predict(input_text): | |
"""Generate a response for single-turn input using the model.""" | |
# Tokenize the input text | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids | |
# Generate a response with the model | |
outputs = model.generate(input_ids, max_new_tokens=2048) | |
# Decode and return the generated response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Convert the text response to speech using E2-F5-TTS | |
audio_bytes = text_to_speech(response, sample="input") | |
return response, audio_bytes | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
"""Generate a response for a multi-turn chat conversation.""" | |
# Prepare the messages in the correct format for the API | |
messages = [{"role": "system", "content": system_message}] | |
for user_input, assistant_reply in history: | |
if user_input: | |
messages.append({"role": "user", "content": user_input}) | |
if assistant_reply: | |
messages.append({"role": "assistant", "content": assistant_reply}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Stream response tokens from the chat completion API | |
for message_chunk in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message_chunk["choices"][0]["delta"].get("content", "") | |
response += token | |
yield response | |
# Create a Gradio ChatInterface demo | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |