import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os import pyttsx3 # Importing pyttsx3 for text-to-speech # Replace 'your_huggingface_token' with your actual Hugging Face access token access_token = os.getenv('token') # Initialize the tokenizer and model with the Hugging Face access token tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token) model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", torch_dtype=torch.bfloat16, use_auth_token=access_token ) model.eval() # Set the model to evaluation mode # Initialize the inference client (if needed for other API-based tasks) client = InferenceClient(token=access_token) # Initialize the text-to-speech engine tts_engine = pyttsx3.init() # Import required modules for E2-F5-TTS from huggingface_hub import Client # Initialize the E2-F5-TTS client client_tts = Client("mrfakename/E2-F5-TTS") def text_to_speech(text, sample): result = client_tts.predict( ref_audio_input=handle_file(f'input/{sample}.mp3'), ref_text_input="", gen_text_input=text, remove_silence=False, cross_fade_duration_slider=0.15, speed_slider=1, api_name="/basic_tts" ) audio_file = open(result[0], "rb") audio_bytes = audio_file.read() return audio_bytes def conversation_predict(input_text): """Generate a response for single-turn input using the model.""" # Tokenize the input text input_ids = tokenizer(input_text, return_tensors="pt").input_ids # Generate a response with the model outputs = model.generate(input_ids, max_new_tokens=2048) # Decode and return the generated response response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Convert the text response to speech using E2-F5-TTS audio_bytes = text_to_speech(response, sample="input") return response, audio_bytes def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): """Generate a response for a multi-turn chat conversation.""" # Prepare the messages in the correct format for the API messages = [{"role": "system", "content": system_message}] for user_input, assistant_reply in history: if user_input: messages.append({"role": "user", "content": user_input}) if assistant_reply: messages.append({"role": "assistant", "content": assistant_reply}) messages.append({"role": "user", "content": message}) response = "" # Stream response tokens from the chat completion API for message_chunk in client.chat_completion( messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message_chunk["choices"][0]["delta"].get("content", "") response += token yield response # Create a Gradio ChatInterface demo demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()