Dhahlan2000 commited on
Commit
919a9c1
·
verified ·
1 Parent(s): ba1c748

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -62
app.py CHANGED
@@ -1,11 +1,7 @@
1
  import gradio as gr
2
- from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
3
  from aksharamukha import transliterate
4
  import torch
5
- from huggingface_hub import InferenceClient
6
- import os
7
-
8
- # access_token = os.environ["TOKEN"]
9
 
10
  # Set up device
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -16,7 +12,7 @@ eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled
16
  translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
17
 
18
  sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
19
- si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False) # Use slow tokenizer
20
 
21
  singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
22
 
@@ -47,64 +43,11 @@ def transliterate_from_sinhala(text):
47
  def transliterate_to_sinhala(text):
48
  return transliterate.process('Velthuis', 'Sinhala', text)
49
 
50
- # Load conversation model
51
- # conv_model_name = "google/gemma-2b-it" # Use GPT-2 instead of the gated model
52
- # tokenizer = AutoTokenizer.from_pretrained(conv_model_name, trust_remote_code=True, token = access_token)
53
- # model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True, token = access_token, torch_dtype=torch.bfloat16).to(device)
54
- # pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
55
-
56
- # model = "tiiuae/falcon-7b-instruct"
57
-
58
- # tokenizer = AutoTokenizer.from_pretrained(model)
59
- # text_gen_pipeline = pipeline(
60
- # "text-generation",
61
- # model=model,
62
- # tokenizer=tokenizer,
63
- # torch_dtype=torch.bfloat16,
64
- # trust_remote_code=True,
65
- # device_map="auto",
66
- # )
67
-
68
- # pipe1 = pipeline("text-generation", model="unsloth/gemma-2b-it")
69
-
70
- # client = InferenceClient("google/gemma-2b-it")
71
 
72
  def conversation_predict(text):
73
- interface = gr.interface.load("microsoft/Phi-3-mini-4k-instruct")
74
  return interface([text])[0]
75
- # return client.text_generation(text, return_full_text=False)
76
- # pipe = pipeline(
77
- # "text-generation",
78
- # model=model,
79
- # tokenizer=tokenizer,
80
- # )
81
- # generation_args = {
82
- # "max_new_tokens": 500,
83
- # "return_full_text": False,
84
- # "temperature": 0.0,
85
- # "do_sample": False,
86
- # }
87
-
88
- # output = pipe(text, **generation_args)
89
- # return output[0]['generated_text']
90
- # input_ids = tokenizer(text, return_tensors="pt")
91
- # outputs = model.generate(**input_ids)
92
- # return tokenizer.decode(outputs[0])
93
-
94
- # outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
95
- # return outputs[0]["generated_text"]
96
-
97
- # sequences = text_gen_pipeline(
98
- # text,
99
- # max_length=200,
100
- # do_sample=True,
101
- # top_k=10,
102
- # num_return_sequences=1,
103
- # eos_token_id=tokenizer.eos_token_id,
104
- # )
105
- # return sequences[0]['generated_text']
106
-
107
-
108
 
109
  def ai_predicted(user_input):
110
  if user_input.lower() == 'exit':
@@ -141,7 +84,6 @@ def respond(
141
  messages.append({"role": "user", "content": message})
142
 
143
  response = ai_predicted(message)
144
- # response = pipe1({"role": "user", "content": message})
145
 
146
  yield response
147
 
 
1
  import gradio as gr
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
3
  from aksharamukha import transliterate
4
  import torch
 
 
 
 
5
 
6
  # Set up device
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
12
  translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
13
 
14
  sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
15
+ si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False)
16
 
17
  singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
18
 
 
43
  def transliterate_to_sinhala(text):
44
  return transliterate.process('Velthuis', 'Sinhala', text)
45
 
46
+ # Placeholder for conversation model loading and pipeline setup
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  def conversation_predict(text):
49
+ interface = gr.Interface.load("microsoft/Phi-3-mini-4k-instruct")
50
  return interface([text])[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  def ai_predicted(user_input):
53
  if user_input.lower() == 'exit':
 
84
  messages.append({"role": "user", "content": message})
85
 
86
  response = ai_predicted(message)
 
87
 
88
  yield response
89