Spaces:
Sleeping
Sleeping
Dhahlan2000
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from aksharamukha import transliterate
|
4 |
import torch
|
5 |
-
from huggingface_hub import InferenceClient
|
6 |
-
import os
|
7 |
-
|
8 |
-
# access_token = os.environ["TOKEN"]
|
9 |
|
10 |
# Set up device
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -16,7 +12,7 @@ eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled
|
|
16 |
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
|
17 |
|
18 |
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
|
19 |
-
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False)
|
20 |
|
21 |
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
|
22 |
|
@@ -47,64 +43,11 @@ def transliterate_from_sinhala(text):
|
|
47 |
def transliterate_to_sinhala(text):
|
48 |
return transliterate.process('Velthuis', 'Sinhala', text)
|
49 |
|
50 |
-
#
|
51 |
-
# conv_model_name = "google/gemma-2b-it" # Use GPT-2 instead of the gated model
|
52 |
-
# tokenizer = AutoTokenizer.from_pretrained(conv_model_name, trust_remote_code=True, token = access_token)
|
53 |
-
# model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True, token = access_token, torch_dtype=torch.bfloat16).to(device)
|
54 |
-
# pipe1 = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device)
|
55 |
-
|
56 |
-
# model = "tiiuae/falcon-7b-instruct"
|
57 |
-
|
58 |
-
# tokenizer = AutoTokenizer.from_pretrained(model)
|
59 |
-
# text_gen_pipeline = pipeline(
|
60 |
-
# "text-generation",
|
61 |
-
# model=model,
|
62 |
-
# tokenizer=tokenizer,
|
63 |
-
# torch_dtype=torch.bfloat16,
|
64 |
-
# trust_remote_code=True,
|
65 |
-
# device_map="auto",
|
66 |
-
# )
|
67 |
-
|
68 |
-
# pipe1 = pipeline("text-generation", model="unsloth/gemma-2b-it")
|
69 |
-
|
70 |
-
# client = InferenceClient("google/gemma-2b-it")
|
71 |
|
72 |
def conversation_predict(text):
|
73 |
-
interface = gr.
|
74 |
return interface([text])[0]
|
75 |
-
# return client.text_generation(text, return_full_text=False)
|
76 |
-
# pipe = pipeline(
|
77 |
-
# "text-generation",
|
78 |
-
# model=model,
|
79 |
-
# tokenizer=tokenizer,
|
80 |
-
# )
|
81 |
-
# generation_args = {
|
82 |
-
# "max_new_tokens": 500,
|
83 |
-
# "return_full_text": False,
|
84 |
-
# "temperature": 0.0,
|
85 |
-
# "do_sample": False,
|
86 |
-
# }
|
87 |
-
|
88 |
-
# output = pipe(text, **generation_args)
|
89 |
-
# return output[0]['generated_text']
|
90 |
-
# input_ids = tokenizer(text, return_tensors="pt")
|
91 |
-
# outputs = model.generate(**input_ids)
|
92 |
-
# return tokenizer.decode(outputs[0])
|
93 |
-
|
94 |
-
# outputs = pipe1(text, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95)
|
95 |
-
# return outputs[0]["generated_text"]
|
96 |
-
|
97 |
-
# sequences = text_gen_pipeline(
|
98 |
-
# text,
|
99 |
-
# max_length=200,
|
100 |
-
# do_sample=True,
|
101 |
-
# top_k=10,
|
102 |
-
# num_return_sequences=1,
|
103 |
-
# eos_token_id=tokenizer.eos_token_id,
|
104 |
-
# )
|
105 |
-
# return sequences[0]['generated_text']
|
106 |
-
|
107 |
-
|
108 |
|
109 |
def ai_predicted(user_input):
|
110 |
if user_input.lower() == 'exit':
|
@@ -141,7 +84,6 @@ def respond(
|
|
141 |
messages.append({"role": "user", "content": message})
|
142 |
|
143 |
response = ai_predicted(message)
|
144 |
-
# response = pipe1({"role": "user", "content": message})
|
145 |
|
146 |
yield response
|
147 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from aksharamukha import transliterate
|
4 |
import torch
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Set up device
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
|
13 |
|
14 |
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
|
15 |
+
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False)
|
16 |
|
17 |
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
|
18 |
|
|
|
43 |
def transliterate_to_sinhala(text):
|
44 |
return transliterate.process('Velthuis', 'Sinhala', text)
|
45 |
|
46 |
+
# Placeholder for conversation model loading and pipeline setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def conversation_predict(text):
|
49 |
+
interface = gr.Interface.load("microsoft/Phi-3-mini-4k-instruct")
|
50 |
return interface([text])[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def ai_predicted(user_input):
|
53 |
if user_input.lower() == 'exit':
|
|
|
84 |
messages.append({"role": "user", "content": message})
|
85 |
|
86 |
response = ai_predicted(message)
|
|
|
87 |
|
88 |
yield response
|
89 |
|