Spaces:
Sleeping
Sleeping
Dhahlan2000
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,11 @@ import gradio as gr
|
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from aksharamukha import transliterate
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Set up device
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -46,10 +51,17 @@ def transliterate_to_sinhala(text):
|
|
46 |
# Placeholder for conversation model loading and pipeline setup
|
47 |
# pipe1 = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
|
48 |
|
49 |
-
interface = gr.Interface.load("huggingface/microsoft/Phi-3-mini-4k-instruct")
|
|
|
|
|
|
|
50 |
|
51 |
-
def
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def ai_predicted(user_input):
|
55 |
if user_input.lower() == 'exit':
|
@@ -58,8 +70,10 @@ def ai_predicted(user_input):
|
|
58 |
user_input = translate_Singlish_to_sinhala(user_input)
|
59 |
user_input = transliterate_to_sinhala(user_input)
|
60 |
user_input = translate_sinhala_to_english(user_input)
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
ai_response_lines = ai_response.split("</s>")
|
64 |
|
65 |
response = translate_english_to_sinhala(ai_response_lines[-1])
|
@@ -85,8 +99,6 @@ def respond(
|
|
85 |
|
86 |
messages.append({"role": "user", "content": message})
|
87 |
|
88 |
-
|
89 |
-
|
90 |
response = ai_predicted(message)
|
91 |
|
92 |
yield response
|
|
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from aksharamukha import transliterate
|
4 |
import torch
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
access_token = os.getenv('ACCESS_TOKEN')
|
10 |
|
11 |
# Set up device
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
51 |
# Placeholder for conversation model loading and pipeline setup
|
52 |
# pipe1 = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
|
53 |
|
54 |
+
# interface = gr.Interface.load("huggingface/microsoft/Phi-3-mini-4k-instruct")
|
55 |
+
|
56 |
+
API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
|
57 |
+
headers = {"Authorization": f"Bearer {access_token}"}
|
58 |
|
59 |
+
def query(payload):
|
60 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
61 |
+
return response.json()
|
62 |
+
|
63 |
+
# def conversation_predict(text):
|
64 |
+
# return interface([text])[0]
|
65 |
|
66 |
def ai_predicted(user_input):
|
67 |
if user_input.lower() == 'exit':
|
|
|
70 |
user_input = translate_Singlish_to_sinhala(user_input)
|
71 |
user_input = transliterate_to_sinhala(user_input)
|
72 |
user_input = translate_sinhala_to_english(user_input)
|
73 |
+
ai_response = query({
|
74 |
+
"inputs": user_input,
|
75 |
+
})
|
76 |
+
# ai_response = conversation_predict(user_input)
|
77 |
ai_response_lines = ai_response.split("</s>")
|
78 |
|
79 |
response = translate_english_to_sinhala(ai_response_lines[-1])
|
|
|
99 |
|
100 |
messages.append({"role": "user", "content": message})
|
101 |
|
|
|
|
|
102 |
response = ai_predicted(message)
|
103 |
|
104 |
yield response
|