Spaces:
Sleeping
Sleeping
DexterSptizu
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ def classify_text(text):
|
|
22 |
# Get token classification results
|
23 |
result = pipe(text)
|
24 |
|
25 |
-
# Format the results into HTML with color highlighting
|
26 |
highlighted_text = ""
|
27 |
last_pos = 0
|
28 |
|
@@ -35,9 +35,9 @@ def classify_text(text):
|
|
35 |
# Add text before the entity without highlighting
|
36 |
highlighted_text += text[last_pos:start]
|
37 |
|
38 |
-
# Add highlighted entity text
|
39 |
color = entity_colors.get(entity, "#e0e0e0") # Default to gray if entity type not defined
|
40 |
-
highlighted_text += f"<span style='background-color:{color}; padding:2px; border-radius:5px;'>{word}</span>"
|
41 |
|
42 |
# Update last position
|
43 |
last_pos = end
|
@@ -45,15 +45,15 @@ def classify_text(text):
|
|
45 |
# Add the rest of the text after the last entity
|
46 |
highlighted_text += text[last_pos:]
|
47 |
|
48 |
-
return highlighted_text
|
49 |
|
50 |
# Gradio Interface
|
51 |
demo = gr.Interface(
|
52 |
fn=classify_text,
|
53 |
inputs=gr.Textbox(lines=5, label="Enter Medical Text"),
|
54 |
-
outputs=gr.HTML(label="Entity Classification with Highlighting"),
|
55 |
title="Medical Entity Classification",
|
56 |
-
description="Enter medical-related text, and the model will classify medical entities with color highlighting.",
|
57 |
examples=[
|
58 |
["45 year old woman diagnosed with CAD"],
|
59 |
["A 65-year-old male presents with acute chest pain and a history of hypertension."],
|
|
|
22 |
# Get token classification results
|
23 |
result = pipe(text)
|
24 |
|
25 |
+
# Format the results into HTML with color highlighting and entity names
|
26 |
highlighted_text = ""
|
27 |
last_pos = 0
|
28 |
|
|
|
35 |
# Add text before the entity without highlighting
|
36 |
highlighted_text += text[last_pos:start]
|
37 |
|
38 |
+
# Add highlighted entity text with the entity name displayed
|
39 |
color = entity_colors.get(entity, "#e0e0e0") # Default to gray if entity type not defined
|
40 |
+
highlighted_text += f"<span style='background-color:{color}; padding:2px; border-radius:5px; position:relative;'><strong>{word}</strong> <small style='color:#000; background-color: #fff; padding: 2px 4px; border-radius: 3px; position: absolute; top: -25px; left: 0;'>{entity}</small></span>"
|
41 |
|
42 |
# Update last position
|
43 |
last_pos = end
|
|
|
45 |
# Add the rest of the text after the last entity
|
46 |
highlighted_text += text[last_pos:]
|
47 |
|
48 |
+
return f"<div style='font-family: Arial, sans-serif; line-height: 1.5;'>{highlighted_text}</div>"
|
49 |
|
50 |
# Gradio Interface
|
51 |
demo = gr.Interface(
|
52 |
fn=classify_text,
|
53 |
inputs=gr.Textbox(lines=5, label="Enter Medical Text"),
|
54 |
+
outputs=gr.HTML(label="Entity Classification with Highlighting and Labels"),
|
55 |
title="Medical Entity Classification",
|
56 |
+
description="Enter medical-related text, and the model will classify medical entities with color highlighting and labels.",
|
57 |
examples=[
|
58 |
["45 year old woman diagnosed with CAD"],
|
59 |
["A 65-year-old male presents with acute chest pain and a history of hypertension."],
|