|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) |
|
|
|
def generate_response(prompt, max_tokens, temperature, top_p): |
|
try: |
|
|
|
messages = [{"role": "user", "content": prompt}] |
|
input_text = tokenizer.apply_chat_template(messages, tokenize=False) |
|
|
|
|
|
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) |
|
outputs = model.generate( |
|
inputs, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True |
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs=[ |
|
gr.Textbox( |
|
label="Enter your prompt", |
|
placeholder="What would you like to know?", |
|
lines=3 |
|
), |
|
gr.Slider( |
|
minimum=10, |
|
maximum=200, |
|
value=50, |
|
step=10, |
|
label="Maximum Tokens" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.2, |
|
step=0.1, |
|
label="Temperature" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.9, |
|
step=0.1, |
|
label="Top P" |
|
) |
|
], |
|
outputs=gr.Textbox(label="Generated Response", lines=5), |
|
title="SmolLM2-1.7B-Instruct Demo", |
|
description="Generate responses using the SmolLM2-1.7B-Instruct model", |
|
examples=[ |
|
["What is the capital of France?", 50, 0.2, 0.9], |
|
["Explain quantum computing in simple terms.", 100, 0.3, 0.9], |
|
["Write a short poem about nature.", 150, 0.7, 0.9] |
|
] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch(share=True) |