Spaces:
Running
Running
File size: 6,828 Bytes
0187d9a fe6002b 0187d9a fe6002b 0187d9a fe6002b e75b314 fe6002b e75b314 fe6002b 0187d9a fe6002b 0187d9a fe6002b 9917a58 fe6002b 0187d9a fe6002b e75b314 fe6002b e75b314 42cc1f1 e75b314 fe6002b 42cc1f1 9917a58 fe6002b 9917a58 fe6002b 9917a58 fe6002b 0187d9a fe6002b 0187d9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import sys
import os
import time
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import FileResponse
import uvicorn
import traceback
import pickle
import shutil
from pathlib import Path
from contextlib import asynccontextmanager
import pandas as pd
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(current_dir, "meisai-check-ai"))
from sentence_transformer_lib.sentence_transformer_helper import (
SentenceTransformerHelper,
)
from data_lib.input_name_data import InputNameData
from data_lib.subject_data import SubjectData
from data_lib.sample_name_data import SampleNameData
from clustering_lib.sentence_clustering_lib import SentenceClusteringLib
from data_lib.base_data import (
COL_STANDARD_NAME,
COL_STANDARD_NAME_KEY,
COL_STANDARD_SUBJECT,
)
from mapping_lib.name_mapping_helper import NameMappingHelper
# Initialize global variables for model and data
sentenceTransformerHelper = None
dic_standard_subject = None
sample_name_sentence_embeddings = None
sample_name_sentence_similarities = None
sampleData = None
sentence_clustering_lib = None
name_groups = None
# Create data directory if it doesn't exist
os.makedirs(os.path.join(current_dir, "data"), exist_ok=True)
os.makedirs(os.path.join(current_dir, "uploads"), exist_ok=True)
os.makedirs(os.path.join(current_dir, "outputs"), exist_ok=True)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifespan context manager for startup and shutdown events"""
global sentenceTransformerHelper, dic_standard_subject, sample_name_sentence_embeddings
global sample_name_sentence_similarities, sampleData, sentence_clustering_lib, name_groups
try:
# Load sentence transformer model
sentenceTransformerHelper = SentenceTransformerHelper(
convert_to_zenkaku_flag=True, replace_words=None, keywords=None
)
sentenceTransformerHelper.load_model_by_name(
"Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_0"
)
# Load standard subject dictionary
dic_standard_subject = SubjectData.create_standard_subject_dic_from_file(
"data/subjectData.csv"
)
# Load pre-computed embeddings and similarities
with open(
f"data/sample_name_sentence_embeddings(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl",
"rb",
) as f:
sample_name_sentence_embeddings = pickle.load(f)
with open(
f"data/sample_name_sentence_similarities(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl",
"rb",
) as f:
sample_name_sentence_similarities = pickle.load(f)
# Load and process sample data
sampleData = SampleNameData()
file_path = os.path.join(current_dir, "data", "sampleData.csv")
sampleData.load_data_from_csv(file_path)
sampleData.process_data()
# Create sentence clusters
sentence_clustering_lib = SentenceClusteringLib(sample_name_sentence_embeddings)
best_name_eps = 0.07
name_groups, _ = sentence_clustering_lib.create_sentence_cluster(best_name_eps)
sampleData._create_key_column(
COL_STANDARD_NAME_KEY, COL_STANDARD_SUBJECT, COL_STANDARD_NAME
)
sampleData.set_name_sentence_labels(name_groups)
sampleData.build_search_tree()
print("Models and data loaded successfully")
except Exception as e:
print(f"Error during startup: {e}")
traceback.print_exc()
yield # This is where the app runs
# Cleanup code (if needed) goes here
print("Shutting down application")
app = FastAPI(lifespan=lifespan)
@app.get("/")
async def root():
return {"message": "Hello World"}
@app.get("/health")
async def health_check():
return {"status": "ok", "timestamp": time.time()}
@app.post("/predict")
async def predict(file: UploadFile = File(...)):
"""
Process an input CSV file and return standardized names
"""
global sentenceTransformerHelper, dic_standard_subject, sample_name_sentence_embeddings
global sample_name_sentence_similarities, sampleData, name_groups
if not file.filename.endswith(".csv"):
raise HTTPException(status_code=400, detail="Only CSV files are supported")
# Save uploaded file
timestamp = int(time.time())
input_file_path = os.path.join(current_dir, "uploads", f"input_{timestamp}.csv")
# Use CSV format with correct extension
output_file_path = os.path.join(current_dir, "outputs", f"output_{timestamp}.csv")
try:
with open(input_file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
finally:
file.file.close()
try:
# Process input data
inputData = InputNameData(dic_standard_subject)
inputData.load_data_from_csv(input_file_path)
inputData.process_data()
# Map standard names
nameMappingHelper = NameMappingHelper(
sentenceTransformerHelper,
inputData,
sampleData,
sample_name_sentence_embeddings,
sample_name_sentence_similarities,
)
df_predicted = nameMappingHelper.map_standard_names()
# Create output dataframe and save to CSV - Fix SettingWithCopyWarning by creating a copy
# columns_to_keep = ["ファイル名", "シート名", "行", "科目", "名称"]
# output_df = inputData.dataframe[columns_to_keep].copy()
output_df = inputData.dataframe.copy()
print(df_predicted.columns)
# Use .loc to avoid SettingWithCopyWarning
output_df.loc[:, COL_STANDARD_SUBJECT] = df_predicted[COL_STANDARD_SUBJECT]
output_df.loc[:, "出力_項目名"] = df_predicted["出力_項目名"]
output_df.loc[:, "参考_名称"] = df_predicted["参考_名称"]
output_df.loc[:, "出力_確率度"] = df_predicted["出力_確率度"]
# Save with utf_8_sig encoding for Japanese Excel compatibility
output_df.to_csv(output_file_path, index=False, encoding="utf_8_sig")
# Return the file as a download with correct content type and headers
return FileResponse(
path=output_file_path,
filename=f"output_{Path(file.filename).stem}.csv",
media_type="text/csv",
headers={
"Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
"Content-Type": "application/x-www-form-urlencoded",
},
)
except Exception as e:
print(f"Error processing file: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|