Spaces:
Runtime error
Runtime error
File size: 2,398 Bytes
72eb83c 5a1e68a ee0f9c8 5a1e68a 72eb83c ee0f9c8 f9febec 5a1e68a ee0f9c8 5a1e68a 214b790 5a1e68a 9339185 b2cfdd0 5a1e68a a2607da 72eb83c ee0f9c8 07da643 ee0f9c8 96e6361 ee0f9c8 5a1e68a fa57fe8 5f80fd8 72eb83c ee0f9c8 41b9b6a d709ea9 f9febec 1768336 5ac096b 72eb83c f9febec 9f388f4 cfc8c76 8d86263 a91c119 72eb83c d7a183e f23cf26 d7a183e f23cf26 72eb83c bb65b06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import hopsworks
import pandas as pd
import gradio as gr
from datetime import datetime
today = datetime.now().strftime('%Y-%m-%d')
# Get data
project = hopsworks.login()
fs = project.get_feature_store()
dataset_api = project.get_dataset_api()
most_positive_fg = fs.get_feature_group(name="articles_most_positive", version=1)
most_positive_df = most_positive_fg.read()
#most_positive_df = most_positive_df[most_positive_df['pubdate'] == today]
most_positive_article = most_positive_df.iloc[-1] # get most recent most positive article (in case today's failed)
# Get images
dataset_api.download("Resources/images/average_sentiment_timeline.png")
dataset_api.download("Resources/images/most_positive_timeline.png")
if most_positive_article['pubdate'] == today: # show image generated for today's article
try:
dataset_api.download("Resources/images/news_image.png")
news_img = 'news_image.png'
except:
news_img = 'https://raw.githubusercontent.com/SamuelHarner/app-images/main/images/delight-news-logo.png?raw=true'
else:
news_img = 'https://raw.githubusercontent.com/SamuelHarner/app-images/main/images/delight-news-logo.png?raw=true'
# Get content
news_headline = most_positive_article["title"]
news_source = most_positive_article["source_id"]
news_description = most_positive_article["description"]
news_link = most_positive_article["link"]
# Create UI
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("IBM Plex Mono"), "Arial", "sans-serif"])) as demo:
gr.Markdown("<div align='center'><h1>The Delight Dispatch ☀️🗞️</h1></div")
gr.Markdown("## Today's News: " + news_headline)
gr.Markdown(news_description)
gr.Markdown("Reported by: " + news_source)
with gr.Row():
with gr.Column():
pass
with gr.Column():
gr.Image(news_img, elem_id="news-img")
with gr.Column():
pass
with gr.Row():
gr.Markdown("Read the full article here: " + news_link)
with gr.Row():
with gr.Column():
gr.Label("Average Sentiment History of News in General")
gr.Image("average_sentiment_timeline.png", elem_id="general-history")
with gr.Column():
gr.Label("Sentiment History of News on this Demo")
gr.Image("most_positive_timeline.png", elem_id="demo-history")
demo.launch(server_port=8000) |