Spaces:
Runtime error
Runtime error
Deepaksiwania12
commited on
Commit
Β·
cdf9475
1
Parent(s):
e16290b
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,23 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import glob
|
4 |
-
import os
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import string
|
7 |
-
from mlxtend.plotting import plot_decision_regions
|
8 |
-
from mpl_toolkits.mplot3d import Axes3D
|
9 |
-
from sklearn.decomposition import PCA
|
10 |
-
from sklearn.preprocessing import StandardScaler
|
11 |
-
from sklearn.neighbors import KNeighborsClassifier
|
12 |
-
from sklearn.tree import DecisionTreeClassifier
|
13 |
-
from sklearn.model_selection import train_test_split, cross_val_score
|
14 |
-
from sklearn.utils.multiclass import unique_labels
|
15 |
-
from sklearn import metrics
|
16 |
-
from sklearn.svm import SVC
|
17 |
-
dim = 100
|
18 |
import torch
|
19 |
-
from torchvision import transforms
|
20 |
-
from PIL import Image
|
21 |
-
|
22 |
-
# Define your model class
|
23 |
-
class YourModelClass(torch.nn.Module):
|
24 |
-
# Define your model architecture here
|
25 |
-
|
26 |
-
# Create an instance of your model
|
27 |
-
model = YourModelClass()
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
try:
|
34 |
-
# Open and preprocess the image
|
35 |
-
img = Image.open(image_path)
|
36 |
-
transform = transforms.Compose([
|
37 |
-
transforms.Resize((224, 224)),
|
38 |
-
transforms.ToTensor(),
|
39 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
40 |
-
])
|
41 |
-
img = transform(img)
|
42 |
-
img = img.unsqueeze(0) # Add batch dimension
|
43 |
-
|
44 |
-
# Make prediction
|
45 |
-
with torch.no_grad():
|
46 |
-
output = model(img)
|
47 |
-
prediction = torch.argmax(output).item()
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Download human-readable labels for ImageNet.
|
9 |
+
response = requests.get("https://git.io/JJkYN")
|
10 |
+
labels = response.text.split("\n")
|
11 |
|
12 |
+
def predict(inp):
|
13 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
14 |
+
with torch.no_grad():
|
15 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
16 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
17 |
+
return confidences
|
18 |
+
import gradio as gr
|
19 |
|
20 |
+
gr.Interface(fn=predict,
|
21 |
+
inputs=gr.Image(type="pil"),
|
22 |
+
outputs=gr.Label(num_top_classes=3),
|
23 |
+
examples=["lion.jpg", "cheetah.jpg"]).launch()
|