Spaces:
Paused
Paused
File size: 11,653 Bytes
5555256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
from __future__ import annotations
import gc
import json
import tempfile
from typing import Generator
import numpy as np
import PIL.Image
import torch
from diffusers import DiffusionPipeline, StableDiffusionUpscalePipeline
from diffusers.pipelines.deepfloyd_if import (fast27_timesteps,
smart27_timesteps,
smart50_timesteps,
smart100_timesteps,
smart185_timesteps)
from settings import (DISABLE_AUTOMATIC_CPU_OFFLOAD, DISABLE_SD_X4_UPSCALER,
HF_TOKEN, MAX_NUM_IMAGES, MAX_NUM_STEPS, MAX_SEED,
RUN_GARBAGE_COLLECTION)
class Model:
def __init__(self):
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.pipe = None
self.super_res_1_pipe = None
self.super_res_2_pipe = None
self.watermark_image = None
if torch.cuda.is_available():
self.load_weights()
self.watermark_image = PIL.Image.fromarray(
self.pipe.watermarker.watermark_image.to(
torch.uint8).cpu().numpy(),
mode='RGBA')
def load_weights(self) -> None:
self.pipe = DiffusionPipeline.from_pretrained(
'DeepFloyd/IF-I-IF-v1.0',
torch_dtype=torch.float16,
variant='fp16',
use_safetensors=True,
use_auth_token=HF_TOKEN)
self.super_res_1_pipe = DiffusionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0',
text_encoder=None,
torch_dtype=torch.float16,
variant='fp16',
use_safetensors=True,
use_auth_token=HF_TOKEN)
if not DISABLE_SD_X4_UPSCALER:
self.super_res_2_pipe = StableDiffusionUpscalePipeline.from_pretrained(
'stabilityai/stable-diffusion-x4-upscaler',
torch_dtype=torch.float16)
if DISABLE_AUTOMATIC_CPU_OFFLOAD:
self.pipe.to(self.device)
self.super_res_1_pipe.to(self.device)
if not DISABLE_SD_X4_UPSCALER:
self.super_res_2_pipe.to(self.device)
else:
self.pipe.enable_model_cpu_offload()
self.super_res_1_pipe.enable_model_cpu_offload()
if not DISABLE_SD_X4_UPSCALER:
self.super_res_2_pipe.enable_model_cpu_offload()
def apply_watermark_to_sd_x4_upscaler_results(
self, images: list[PIL.Image.Image]) -> None:
w, h = images[0].size
stability_x4_upscaler_sample_size = 128
coef = min(h / stability_x4_upscaler_sample_size,
w / stability_x4_upscaler_sample_size)
img_h, img_w = (int(h / coef), int(w / coef)) if coef < 1 else (h, w)
S1, S2 = 1024**2, img_w * img_h
K = (S2 / S1)**0.5
watermark_size = int(K * 62)
watermark_x = img_w - int(14 * K)
watermark_y = img_h - int(14 * K)
watermark_image = self.watermark_image.copy().resize(
(watermark_size, watermark_size),
PIL.Image.Resampling.BICUBIC,
reducing_gap=None)
for image in images:
image.paste(watermark_image,
box=(
watermark_x - watermark_size,
watermark_y - watermark_size,
watermark_x,
watermark_y,
),
mask=watermark_image.split()[-1])
@staticmethod
def to_pil_images(images: torch.Tensor) -> list[PIL.Image.Image]:
images = (images / 2 + 0.5).clamp(0, 1)
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
images = np.round(images * 255).astype(np.uint8)
return [PIL.Image.fromarray(image) for image in images]
@staticmethod
def check_seed(seed: int) -> None:
if not 0 <= seed <= MAX_SEED:
raise ValueError
@staticmethod
def check_num_images(num_images: int) -> None:
if not 1 <= num_images <= MAX_NUM_IMAGES:
raise ValueError
@staticmethod
def check_num_inference_steps(num_steps: int) -> None:
if not 1 <= num_steps <= MAX_NUM_STEPS:
raise ValueError
@staticmethod
def get_custom_timesteps(name: str) -> list[int] | None:
if name == 'none':
timesteps = None
elif name == 'fast27':
timesteps = fast27_timesteps
elif name == 'smart27':
timesteps = smart27_timesteps
elif name == 'smart50':
timesteps = smart50_timesteps
elif name == 'smart100':
timesteps = smart100_timesteps
elif name == 'smart185':
timesteps = smart185_timesteps
else:
raise ValueError
return timesteps
@staticmethod
def run_garbage_collection():
gc.collect()
torch.cuda.empty_cache()
def run_stage1(
self,
prompt: str,
negative_prompt: str = '',
seed: int = 0,
num_images: int = 1,
guidance_scale_1: float = 7.0,
custom_timesteps_1: str = 'smart100',
num_inference_steps_1: int = 100,
) -> tuple[list[PIL.Image.Image], str, str]:
self.check_seed(seed)
self.check_num_images(num_images)
self.check_num_inference_steps(num_inference_steps_1)
if RUN_GARBAGE_COLLECTION:
self.run_garbage_collection()
generator = torch.Generator(device=self.device).manual_seed(seed)
prompt_embeds, negative_embeds = self.pipe.encode_prompt(
prompt=prompt, negative_prompt=negative_prompt)
timesteps = self.get_custom_timesteps(custom_timesteps_1)
images = self.pipe(prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
num_images_per_prompt=num_images,
guidance_scale=guidance_scale_1,
timesteps=timesteps,
num_inference_steps=num_inference_steps_1,
generator=generator,
output_type='pt').images
pil_images = self.to_pil_images(images)
self.pipe.watermarker.apply_watermark(
pil_images, self.pipe.unet.config.sample_size)
stage1_params = {
'prompt': prompt,
'negative_prompt': negative_prompt,
'seed': seed,
'num_images': num_images,
'guidance_scale_1': guidance_scale_1,
'custom_timesteps_1': custom_timesteps_1,
'num_inference_steps_1': num_inference_steps_1,
}
with tempfile.NamedTemporaryFile(mode='w', delete=False) as param_file:
param_file.write(json.dumps(stage1_params))
stage1_result = {
'prompt_embeds': prompt_embeds,
'negative_embeds': negative_embeds,
'images': images,
'pil_images': pil_images,
}
with tempfile.NamedTemporaryFile(delete=False) as result_file:
torch.save(stage1_result, result_file.name)
return pil_images, param_file.name, result_file.name
def run_stage2(
self,
stage1_result_path: str,
stage2_index: int,
seed_2: int = 0,
guidance_scale_2: float = 4.0,
custom_timesteps_2: str = 'smart50',
num_inference_steps_2: int = 50,
disable_watermark: bool = False,
) -> PIL.Image.Image:
self.check_seed(seed_2)
self.check_num_inference_steps(num_inference_steps_2)
if RUN_GARBAGE_COLLECTION:
self.run_garbage_collection()
generator = torch.Generator(device=self.device).manual_seed(seed_2)
stage1_result = torch.load(stage1_result_path)
prompt_embeds = stage1_result['prompt_embeds']
negative_embeds = stage1_result['negative_embeds']
images = stage1_result['images']
images = images[[stage2_index]]
timesteps = self.get_custom_timesteps(custom_timesteps_2)
out = self.super_res_1_pipe(image=images,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
num_images_per_prompt=1,
guidance_scale=guidance_scale_2,
timesteps=timesteps,
num_inference_steps=num_inference_steps_2,
generator=generator,
output_type='pt',
noise_level=250).images
pil_images = self.to_pil_images(out)
if disable_watermark:
return pil_images[0]
self.super_res_1_pipe.watermarker.apply_watermark(
pil_images, self.super_res_1_pipe.unet.config.sample_size)
return pil_images[0]
def run_stage3(
self,
image: PIL.Image.Image,
prompt: str = '',
negative_prompt: str = '',
seed_3: int = 0,
guidance_scale_3: float = 9.0,
num_inference_steps_3: int = 75,
) -> PIL.Image.Image:
self.check_seed(seed_3)
self.check_num_inference_steps(num_inference_steps_3)
if RUN_GARBAGE_COLLECTION:
self.run_garbage_collection()
generator = torch.Generator(device=self.device).manual_seed(seed_3)
out = self.super_res_2_pipe(image=image,
prompt=prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=1,
guidance_scale=guidance_scale_3,
num_inference_steps=num_inference_steps_3,
generator=generator,
noise_level=100).images
self.apply_watermark_to_sd_x4_upscaler_results(out)
return out[0]
def run_stage2_3(
self,
stage1_result_path: str,
stage2_index: int,
seed_2: int = 0,
guidance_scale_2: float = 4.0,
custom_timesteps_2: str = 'smart50',
num_inference_steps_2: int = 50,
prompt: str = '',
negative_prompt: str = '',
seed_3: int = 0,
guidance_scale_3: float = 9.0,
num_inference_steps_3: int = 75,
) -> Generator[PIL.Image.Image]:
self.check_seed(seed_3)
self.check_num_inference_steps(num_inference_steps_3)
out_image = self.run_stage2(
stage1_result_path=stage1_result_path,
stage2_index=stage2_index,
seed_2=seed_2,
guidance_scale_2=guidance_scale_2,
custom_timesteps_2=custom_timesteps_2,
num_inference_steps_2=num_inference_steps_2,
disable_watermark=True)
temp_image = out_image.copy()
self.super_res_1_pipe.watermarker.apply_watermark(
[temp_image], self.super_res_1_pipe.unet.config.sample_size)
yield temp_image
yield self.run_stage3(image=out_image,
prompt=prompt,
negative_prompt=negative_prompt,
seed_3=seed_3,
guidance_scale_3=guidance_scale_3,
num_inference_steps_3=num_inference_steps_3)
|